

Static/Dynamic Fault Trees & Reward Event Trees Analysis Tool

www.safest.dgbtek.com

User Manual Version 1.0.0

Dr. Falak Sher, Asst. Prof. Matthias Volk, Prof. Joost-Pieter Katoen, Prof. Mariëlle Stoelinga

Prepared by DGB Technologies LLC Wyckoff, NJ 07481, USA

DGB Technologies is a multimission company specializing in formal verification tools and technologies for stochastic analysis of mission and life-critical systems.

DGB Technologies LLC Risk & Reliability Analysis Wyckoff, NJ 07481, USA

Static/Dynamic Fault Trees & Reward Event Trees Analysis Tool www.safest.dgbtek.com

Dr. Falak Sher, <u>DGB Technologies LLC</u> Asst. Prof. Matthias Volk, <u>Eindhoven University</u> Prof. Joost-Pieter Katoen, <u>RWTH Aachen University</u> Prof. Mariëlle Stoelinga, <u>Twente University</u>

Abstract

SAFEST is a powerful tool for modeling and analyzing both static and dynamic fault trees as well as reward event trees. Dynamic fault trees (DFTs) extend standard fault trees by providing support for faithfully modeling spare management, functional dependencies, and order-dependent failures. Reward event trees (RETs) extend traditional event trees with state rewards as well as non-deterministic decision-making at states, thus providing upper and lower bounds on the analysis results.

The SAFEST tool provides an efficient and powerful analysis of DFTs/RETs via probabilistic model checking – a rigorous, automated analysis technique for probabilistic systems. The backbone of the analysis is based on efficient state space generation. Several optimization techniques are incorporated, such as exploiting irrelevant failures, symmetries, and independent modules. Probabilistic model checking allows us to analyze the resulting state space with respect to a wide range of measures of interest. In addition, an approximation approach is provided that builds only parts of the state space and allows to iteratively refine the computations up to the desired accuracy.

The SAFEST tool allows embedding DFTs within RETs thus providing probabilities of transition branches of RETs. It provides a graphical user interface for creating, generating, simulating, simplifying, and visualizing the results of fault trees/event trees.

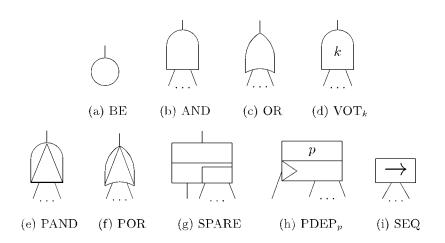
SAFEST is a state-of-the-art analysis tool, as demonstrated by an experimental evaluation and comparison with existing tools. A variety of case studies, including vehicle guidance systems, train operations in railway station areas, and energy systems such as (nuclear) power plants have been done. This document explains how to use the SAFEST.

Contents

Contents 1. Introduction **Dynamic Fault Trees (DFTs)** Reward Event Trees (RETs) Probabilistic Model-checking 2. SAFEST Project Creation <u>Open</u> **Export** <u>View</u> Help **Status** 3. Fault Tree Analysis Module Failure Models View Creation Import Import models from SysML models: Get the SvsML model from a file Get the SysML model/project via API Update Failure Events Basic <u>Composite</u> Parameter Sets View Creation **Import Export** Update **Constants Real-value Expressions Failure distributions Empirical failure distributions**

Metrics Basic Complex Importance Custom Computing (Exact) Analysis **Bounded analysis** Graphs Interactive simulation Minimal cut set (for static fault trees) 4. Bowtie Analysis Module Parameter Sets View Creation Import Export Update Constant **Real-value Expressions** Loss Sets **Consequence Sets Bowtie Models** View Creation Export Import Update Computing (Exact) Analysis Graphs 5. Annotation of SysML Models with Safety Information 6. Grammars Regular Expressions of Identifiers and Numeric Constants Context Free Grammar (CFG) of Real Expressions Context Free Grammar (CFG) of Boolean Expressions

Context Free Grammar (CFG) of Continuous Stochastic Logic (CSL)



1. Introduction

Probabilistic risk assessment (PRA) is of critical importance to ensure the safe and reliable operation of today's systems in areas such as transportation, infrastructure, power generation, space exploration, etc. Fault trees and event trees are popular models in PRA and are recommended by many standards and regulatory bodies.

Dynamic Fault Trees (DFTs)

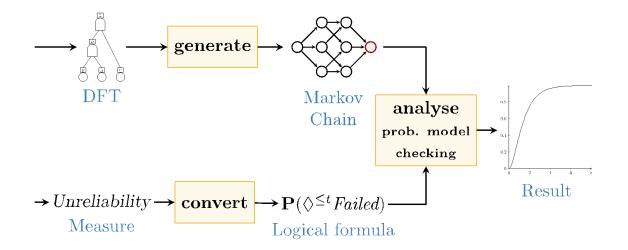
While standard (or static) fault trees (SFT) are widely used and well supported by PRA tools, their modeling capabilities are limited. Several extensions to fault trees have been proposed

over the years to overcome these limitations. Dynamic fault trees (DFT) were introduced by Dugan and are one of the most prominent extensions. DFTs introduce new gate types that allow for more faithful modeling by providing explicit support for spare management, functional dependencies, and order-dependent failures. DFT models have been successfully applied for e.g., aerospace systems, autonomous driving, railway engineering, and analysis of spacecraft via the COMPASS toolset.

Reward Event Trees (RETs)

Reward event trees extend standard event trees with reward models for states as well as non-deterministic decision-making at states. Unlike standard event trees, the analysis of RETs not only provides the probabilities/frequencies of different outcomes/consequences (for an initiating/accidental event) but also provides upper and lower bounds on the results in the case of decision-making. Furthermore, it allows the evaluation of expected values of different quantities of interest e.g. radionuclide emission, etc. Details about event trees can be read at the link.

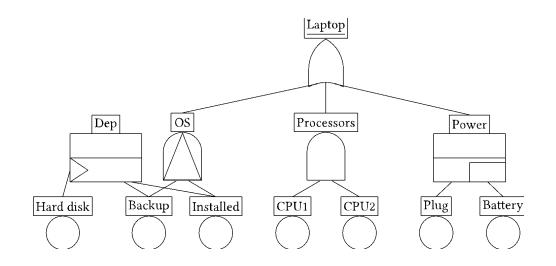
We have developed SAFEST, a modern, state-of-the-art tool for modeling and analyzing both standard (static) and dynamic fault trees and event trees. SAFEST comes with a web-based graphical user interface that allows efficient modeling, visualization, simplification, and interactive simulation of fault trees using a graphical editor. Moreover, it allows embedding



DFTs within RETs thus providing probabilities of transition branches of RETs. The analysis of dynamic fault trees/event trees is enabled via an efficient translation to Markov models and the use of state-of-the-art techniques from probabilistic model checking.

Probabilistic Model-checking

Model checking is a rigorous technique for checking whether a given model satisfies a specification given as a logical formula. Model checking uses highly optimized techniques to efficiently analyze the state space. Probabilistic model checking considers probabilistic systems that capture random behavior, such as Markov models. The approach uses tailored numerical algorithms and answers queries such as "What is the probability of a system failure within a year?" or "What is the expected time to failure when the system has entered a degraded state?".


We apply probabilistic model checking to DFT/DET analysis. The input is a DFT/DET and a measure of interest, for instance, the unreliability or the mean-time-to-failure (MTTF). From the DFT/DET, a Markov chain is generated. The measure is converted to a logical formula. Both the Markov chain and the logical formula are fed into a probabilistic model checker which computes the results.

The use of probabilistic model checking has several advantages for the DFT/DET analysis. First, model checking supports a wide range of complex logical formulas that can be checked out of the box. Thus, we use a one-for-all analysis approach instead of having to develop algorithms tailored to each type of measure. Second, our approach uses model checking as a black box. This means we can easily change the underlying analysis tools and directly incorporate and benefit from recent advances in model-checking algorithms without changing the overall approach. Third, unlike approaches based on Monte Carlo simulation, probabilistic model checking yields exact results and, in particular, is agnostic to rare events.

The key innovation of our approach is an efficient generation of the state space to combat possible state space explosion. To this end, we developed several optimizations that exploit irrelevant failures of events, symmetric structures, and independent modules in the DFT. Furthermore, we incorporated efficient analysis techniques for static fault trees based on binary decision diagrams (BDD). Finally, we developed an approximation approach based on only building the most relevant parts of the state space. All of these techniques allow for efficient analysis of DFTs.

Our experimental evaluation shows that our tool significantly outperforms existing DFT analysis tools and can handle DFTs with several hundred elements. We have demonstrated the performance of our tool and the modeling capabilities of DFTs in several industrial case studies. Examples include DFT models for vehicle guidance systems and analyzing the impact of infrastructure failures on train operations in railway station areas.

There are two main modules of the SAFEST tool:

Fault Tree Analysis Module: It allows the building of failure models of different failure scenarios of systems that may arise during the life cycle of a system.

Bowtie Analysis Module: This allows the building of bowtie models that allow for analysis of the probabilities/frequencies of different outcomes/consequences based on an initiating/accidental event.

2. SAFEST Project

In the SAFEST tool, multiple failure scenarios (fault trees) of a system as well as bowtie models (event trees) can be created under the Fault Tree Analysis and Bowtie Analysis modules.

Creation

Click on "New Project" in the File menu of the toolbar. The following window will appear.

New Project	
	Cancel Save

Fill up mandatory fields, and click the "Save" button. The following page will appear, where users can make any changes if required.

John Electrical		
John Electrical	1.0	est_Project
		otion

Open

Click the "Open Project" in the File menu of the toolbar to open an already existing SAFEST project from your drive.

Export

Click the "Export Project" in the File menu of the toolbar to export the current SAFEST project on your drive.

View

Project views can be selected from the View menu of the toolbar. There are two types of views:

- Simple View. It is for simple users. Under this view, a user cannot create Failure events in models. Reliability metrics can only be computed for top-level events (TLE or system_failed). Moreover, only basic reliability measures like *reliability/unreliability, mean time to failure,* and *average failure probability per hour* can be computed for the TLE.
- Advance View. It is for advanced users or researchers. This view gives the full functionality of the SAFEST tool.

Help

In the Help menu of the toolbar, we have:

- Documentation: It contains a link to the user manual of the SAFEST tool, as well as the grammar for expressions used in the models as parameters.
- Activation key: Here you can add a license key and activate the SAFEST tool functionality.

Status

In the status bar, the information about the view of the currently selected project is shown along with the status of the Analysis engine, which is either Running or Stopped.

3. Fault Tree Analysis Module

It contains all failure models (fault trees) along with their parameter sets, metrics, and computing methods.

Failure Models

Each failure model comprises a fault tree and its failure events.

View

Click on the "Failure Models" under "Fault Tree Analysis" in the left panel to display all failure models in a table. A failure model that is worked upon the most can be selected as a default model by selecting the corresponding radio button.

Failure Models

Model name	Fault tree	Version	Author	Time bound (Life cycle)	Description	Default 🐧	Actions
NPP_PowerSupply_EDF	Dynamic			100 hour		۲	🛆 🧵
CentCompSystem	Dynamic			5 hour		0	🛆 🧵
Test	Dynamic			100 hour		0	🛆 🧵

Add failure model Import failure model Import failure model from SysML

Click on the failure model name in the left panel to see details about the model.

Name*	Version	Author
Test_Project_model	1.0	John
Fault tree O Static 🖲 Dynamic		
Time bound (Life cycle)* 3		Parameter set 🟮
100 \$	hours ~	None ~
Description		
		<i>i</i> ,
		Save

Change fields and click the "Save" button.

Creation

Click on the "Add failure model" button on the "Failure Models" page to create a new model.

Name*	Model		
Version			
Author			
Time bound (Life cycle)* 🕄			
100	hours		~
Parameter set 🟮			
None			~
Description			
Fault tree type 💿 Dynamic 🛛 Static		Cancel	Save

- A time bound for which the model is to be analyzed may be inserted. This value can be changed at the time of analysis as well.
- A parameter set in which parameters to be used in the model are defined may be selected. It can also be changed at the time of analysis.
- The type of fault tree can be selected as "Static" or "Dynamic".

Fill up the mandatory fields and click the "Save" button.

Import

Click on the "Import failure model" button on the "Failure Models" page to import an already created model.

Import Failure	Model	
Name*		
Select file format		
JSON		~
Choose file No file chosen		
	Cancel	Save

Select the format of the model and a file from the drive. Click the "Save" button. We support "JSON" "Galileo" and "Failure Model" formats. Note that Failure Model (.fm) is the format in which we allow to import/export of failure models in the SAFEST tool.

Import models from SysML models:

Users have the option to extract failure models from SysML 2.0 models. The SysML model has to be annotated with safety information in order to generate DFTs automatically out of it. Click the "Import failure model from SysML" button on the "Failure Models" page.

Fault Trees Extraction From SysML	
© Get SysML models/projects via API	
API base path	
http://sysml2.intercax.com:9000	C
http://sysml2.intercax.com:9000	
Models/Projects	
Commits	
○ Get SysML model form a file	
Choose file No file chosen	
Cancel	Extract

The user has two options to extract DFTs out of SysML models

Get the SysML model from a file

Compile a SysML model, which is annotated with safety information – please read the <u>Annotate</u> <u>SysML Models with Safety Information section</u> below for further details on how to annotate SysML models with safety information in order to prepare them for automatic extraction of DFTs out of them, in a Jupyter notebook. And run the following command to export the model in JSON format. <u>Currently, we support the latest version – v0.33.0 – of SysML 2.0:</u>

%export <package_name>

After downloading, DFTs can be extracted from it. Select the radio button "Get SysML model from a file", select the downloaded file (in JSON format), and click the "Extract" button.

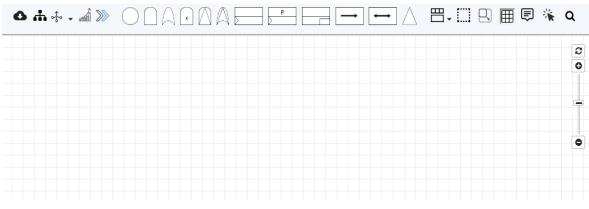
The following popup will appear that contains fault trees of all failure scenarios that have been mentioned in the SysML model. It also contains parameters that have been given in the SysML mode e.g. failure rates of components inside the SysML.

Extracted Fault Trees from SysML		
Fault Trees		
Name	Override	Load
LaptopPackage_Laptop_laptop		
LaptopPackage_Laptop_power		<
Parameter Set		
Name	Override	Load
LaptopPackage (8)		
	Cancel	Load

The user can select the failure models as well as parameters to be included in the project.

Get the SysML model/project via API

SysML projects are normally uploaded to some central repository. One has the option to connect to that repository using its API and upload the model from there. Select the "Get SysML models/projects via API" radio button, enter a path in the "API base path" and click the circular arrow.


Fault Trees Extraction From SysML	
Set SysML models/projects via API	
API base path	
http://sysml2.intercax.com:9000	G
http://sysml2.intercax.com/9000	
Models/Projects	
ABC Sat May 27 08:08:31 CEST 2023 (379e3cca-b7df-4874-93ab-4c8627aa9539)	
ActionTest Thu May 11 13:29:19 CDT 2023 (2c4e1b30-1f61-4f6e-8bf3-253c45fe88ec) ActuatorSystem_LogicalArchitecture Thu Mar 23 11:27:50 UTC 2023 (10b9f602-2f37-4808-affd-7e4cb2db4d2f) AircraftFuelDistributionSystem Tue Aug 29 16:25:35 PKT 2023 (2f70107f-c98d-487c-bb08-48dcd0850f24) AnalysisAnnotation Fri Oct 13 12:48:03 CEST 2023 (36140cb4-fa5d-4321-91d0-feb606180c39) AnalysisAnnotation Fri Oct 13 15:06:54 CEST 2023 (05d7e586-7044-4b6f-a7e0-9c2c7da2c92a) AvionicsDataLibrary Wed Mar 29 08:46:59 MDT 2023 (27a0dac1-120d-4c2f-af52-ff0c299f1a8b)	
Commits	
2023-05-27T02:08:34.62199-04:00 (d3657db0-371d-4273-a074-b2fd79cc37d3)	
┌ ○ Get SysML model form a file	
Choose file No file chosen	
Ca	Extract

Select a project and its commit, and then click the "Extract" button to upload the SysML model. The rest of the steps are the same as above. For testing purposes, we have uploaded our "LaptopPackage" project to the above repository.

The algorithm will automatically generate fault trees and show them on the "Failure Models" page. Please read **Annotate SysML Models with Safety Information section** below for further details.

Update

Click on the "Fault Tree" of a failure model to open a drag-and-drop grid.

- Draw your tree by dragging different elements from the toolbar.
- Click on an element to update its information in the corresponding popup window

Name* ()	
18	
O Create a fault tree Import a fault tree from a file	
Select file format	
JSON	~
Choose file No file chosen	
Description	
Са	ncel Save

• A block can be created from scratch or uploaded from the drive. To upload, select the file (in JSON or Galileo format) and click the save button.

	MUTEX
Туре	
MUTEX	~
Name* 🕄	
11	
Description	
	Cancel Save

Туре	SEQ
SEQ	~
Name* 🟮	
12	
Description	
	Cancel Save

	OR	
Туре		
OR		~
Name* 🕄		
13		
OR gate propagates failure if any of its children will fail.		
Description		
Root element	□ Mark this as a failure event	11
	Cancel	ave

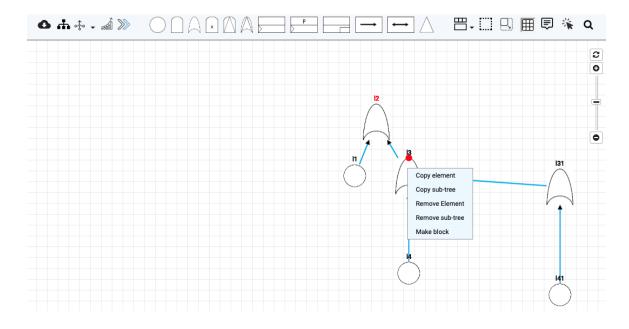
	V	ΌΤ		
Туре				
VOT				~
Name* 🕄				
15				
Threshold(θ) * ()				
1				
VOT gate propagates failure only if number of children that fail is gr	eater than the threshold value.			
Description				
Root element	☐ Mark this as a failure even	nt		
			Cancel	Save

Туре	FDEP	
FDEP		~
Name* 🚯		
16		
Description		
		Cancel Save

Туре	BE	
BE		~
Name* 1		
18		
BE models failure of a system component that cannot be a	ecomposed further into subcomponents.	
Enter failure distribution ¹	○ Select failure dist	tribution 🕄
Exponential distribution		~
Rate $(\lambda)^*$ (1)		
1	per hour	
Enter dormancy (ζ) when BE is used as a spare c	omponent* 🜖	
0		
Description		
Root element	\Box Mark this as a failure event	
		Cancel Save

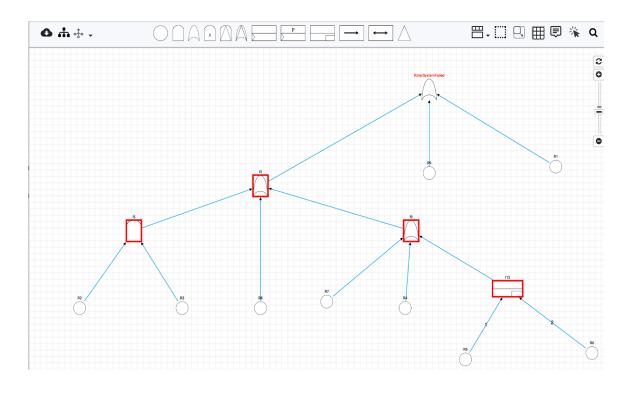
- Only one element can be selected as a top-level element in a tree.
- The values of some of the fields e.g. failure rates, probabilities, etc can be given as parameters (defined later) instead of constant values.
- The "Mark this as a failure event" checkbox is only visible in the advance view.
- The "Mark this as a failure event" checkbox is available only for those elements that propagate failure to their parents. If this checkbox is selected for an element, it is added to "Failure Events" under the failure model (in the left panel) as a basic event. This feature is only available in "Advance View".
- Elements can be connected with each other by drawing edges between them.
- Click on the icon it to enable the selection of multiple elements in the grid view. This

Remove Eleme	ents
Copy elements	\$
Paste	


can be done by clicking on a screen and then drawing the mouse. All elements with a rectangle will be selected, which can then be moved together.

- Right-click on the canvas and the following popup will appear:
 - By clicking "Remove Elements" all selected elements will be removed.
 - By clicking "Copy elements" all selected elements will be copied.
 - By clicking "Paste" previously copied elements will be pasted.

• On right-clicking on an element, a popup comes up that allows you to copy the element, copy the sub-tree under it, delete the element, delete the sub-tree under it, or convert the sub-tree under it into a block (if possible)


• Click on the download icon • , a popup comes up to download the tree in JSON, Latex, and Galileo formats.

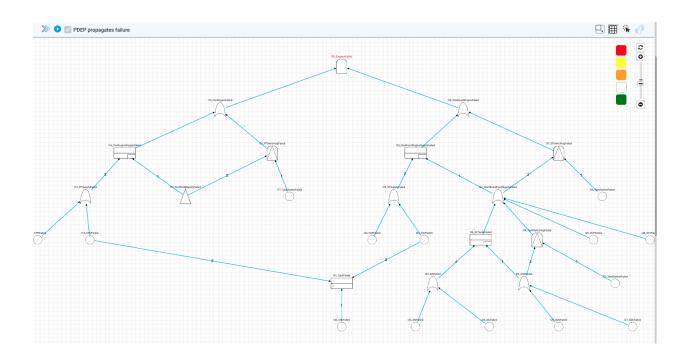
	Export		
Select file format			
✓ JSON			ł
Latex			
Galileo			
		Cancel	Export

• Click on the icon to highlight the elements that, along with their children, can be converted into modules (independent sub-trees). In order to convert an element and its children into a module, right-click on it and then click the "Make block".

- In order to simplify a fault tree click on the down arrow along the icon . It will give three options for tree simplification:
 - Simplify by all rules. It will apply all rules recursively for simplification.
 - Default rules. It will apply a selected set of rules (most commonly used) for simplification. They are:
 - SPLIT_FDEPS Split FDEPs with two or more children into single FDEPs with only one child.
 - MERGE_BES Try to merge BEs under an OR-gate into one BE.
 - TRIM Trim parts of the DFT in place that do not contribute to the top-level element.
 - REMOVE_SINGLE_SUCCESSOR Remove gates with just one successor. These gates will fail together with this child, so they can directly be eliminated.
 - FLATTEN_GATE Flattening of AND-/OR-/PAND-gates.
 - Custom rules. It allows users to select rules that are to be applied for simplification.

Name	Description
SPLIT_FDEPS	Split FDEPs with two or more children into single FDEPs with only one child.
MERGE_BES	Try to merge BEs under an OR-gate into one BE.
TRIM	Trim parts of the DFT in place which do not contribute to the top level element.
REMOVE_DEPENDENCIES_TLE	Try to remove superfluous dependencies. These dependencies have a trigger which already leads to failure of the top level element.
MERGE_IDENTICAL_GATES	Try to merge gates with the same type and identical successors. These gates surely fail simultaneously and thus, one gate can be removed.
REMOVE_SINGLE_SUCCESSOR	Remove gates with just one successor. These gates will fail together with this child, so they can directly be eliminated.
FLATTEN_GATE	Flattening of AND-/OR-/PAND-gates.
SUBSUME_GATE	Subsumption of OR-gate by AND-gate or of AND-gate by OR-gate.
REPLACE_FDEP_BY_OR	Eliminate FDEPs by introducing an OR-gate. Let A be the trigger and B be the dependent element. Both must be connected to the top level element. B must have only one predecessor and no SPARE or PAND/POR in its predecessor closure.
REMOVE_SUPERFLUOUS_FDEP	Eliminate superfluous FDEP from AND or OR. This FDEP is triggered after the failure of the dependent element and thus, it does not influence anything else.
REMOVE_SUPERFLUOUS_FDEP_SUCCESSO	Eliminate FDEP between two successors of an OR or PAND. Only supports FDEPs with one common predecessor.

• Click on the icon (not visible when sub-trees are in focus) to do a basic analysis that includes reliability, mean-time-to-failure, and average-failure-probability per hour. It will take the user to the "Analysis" window under "Computing" in the left panel.


Metric(s) *		Analysis	
.,	system_fa	ailed], Reliability: 1 - P=? [F<=time_bound system_failed], Average failure probability per unit	
Failure model*	, _		
AircraftFuelDistributionSystem_4	FDS_Eng	inesFailed	~
Fault tree root element	Root E	lement (Default)	~
Metric parameters			
Name		Value 🟮	
time_bound		100	
Assign failure event labels (of the m	odel) to n	netric labels	
Metric label		Failure Event label	
system_failed		system_failed	
Model parameter set 🟮			
AircraftFuelDistributionSystem T	ue Aug 29	16:25:35 PKT 2023	~
Constants			
Name		5.842076-05	
sov		0.00165633	וו
SIV		0.00165633	
CSV		0.00165633	
			5
Simplify fault tree before analysis	3	Analysis type: O Markov 💿 Hybrid (Markov and/or BDD)	
Output tab: Existing New 		Results	~
		Cancel Start	

• Click on the icon to start the interactive simulation. It will take the user to the "Interactive Simulation" window under "Computing" in the left panel. A popup will appear to select/change the model and the parameter set. On clicking the "Select" button the simulation window appears.

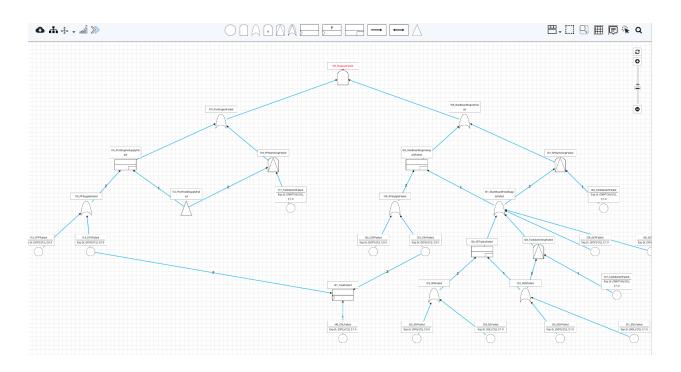
Simulation	
Failure Model	
AircraftFuelDistributionSystem_AFDS_EnginesFailed	~
Select parameter set* 🕄	
AircraftFuelDistributionSystem Tue Aug 29 16:25:35 PKT 2	~
Cancel Select	

- Click on the down arrow new the icon , it will give three options to display a tree:
 - \circ $\;$ Canvas view. It shows the tree in the grid.
 - \circ Tabular view. It will show the tree in a tabular form
 - \circ $\;$ Textual view. It shows the tree in Galileo format.

Ф 🛧 ⊹ – 🔊 🔊

Tabular View

🖽 - 🛄 🖳 🖽 🗐 🐐 Q


			Fault Tree (AircraftFuelDistributionSystem_AFDS_E	ignesi alea)
	(Expand ALL) (Collapse All)		Gates: 8 Dynamic Gates: 7 Blocks: 1	
	Name	Type	Information	Description
	_EnginesFailed	AND	Failure Event: true, Root Element: true	AircraftFuelDistributionSystem_AFDS_EnginesFailed
	_TankFailed	FDEP		AircraftFuelDistributionSystem_AFDS_centralReservation_TankFailed
	I_CRLFailed	BE	Exp (λ: (CRL)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_centralReservation_crt_CRLFailed
	L_StarBoardEngineFailed	OR		AircraftFuelDistributionSystem_AFDS_StarBoardEngineFailed
	_SFSwitchingFailed	PAND		AircraftFuelDistributionSystem_AFDS_SFSwitchingFailed
	TankSwitchFailed	BE	Exp (λ: (SWITCH)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_sfSwitch_TankSwitchFailed
135	_StarBoardEngineSupplyFailed	SPARE		AircraftFuelDistributionSystem_AFDS_StarBoardEngineSupplyFailed
	SFSupplyFailed	OR		AircraftFuelDistributionSystem_AFDS_centralReservation_SFSupplyFailed
133	L_CSVFailed	BE	Exp (λ: (SCV)/(1)), ζ: 0.0	AircraftFuelDistributionSystem_AFDS_centralReservation_csv_CSVFailed
0 132	_CSPFailed	BE	Exp (λ: (SCP)/(1)), ζ: 0.0	AircraftFuelDistributionSystem_AFDS_centralReservation_csp_CSPFailed
1 31	_StartBoardFeedSupplyFailed	OR		$\label{eq:alpha} A ircraftFuelDistributionSystem_AFDS_starboardFeed_StartBoardFeedSupplyFailed$
2 130	L_SCVFailed	BE	Exp (λ: (SCV)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_scv_SCVFailed
3 129	_SCPFailed	BE	Exp (λ: (SCP)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_scp_SCPFailed
4 128	_TankSwitchingFailed	PAND		AircraftFuelDistributionSystem_AFDS_starboardFeed_TankSwitchingFailed
5 127	_TankSwitchFailed	BE	Exp (λ: (SWITCH)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_tankSwitch_TankSwitchFailed
6 126	_SFTanksFailed	SPARE		AircraftFuelDistributionSystem_AFDS_starboardFeed_SFTanksFailed
7 125	_SISFailed	OR		AircraftFuelDistributionSystem_AFDS_starboardFeed_sis_SISFailed
8 124	SILFailed	BE	Exp (λ: (SIL)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_sis_sit_SILFailed
9 123	SIVFailed	BE	Exp (λ: (SIV)/(1)), ζ: 0.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_sis_siv_SIVFailed
0 122	_SOSFailed	OR		AircraftFuelDistributionSystem_AFDS_starboardFeed_sos_SOSFailed
1 121	_SOLFailed	BE	Exp (λ: (SOL)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_sos_sot_SOLFailed
2 120	_SOVFailed	BE	Exp (λ: (SOV)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_starboardFeed_sos_sov_SOVFailed
3 19	_PortEngineFailed	OR		AircraftFuelDistributionSystem_AFDS_PortEngineFailed
4 18	_PFSwitchingFailed	PAND		AircraftFuelDistributionSystem_AFDS_PFSwitchingFailed
5 117	_TankSwitchFailed	BE	Exp (λ: (SWITCH)/(1)), ζ: 1.0	AircraftFuelDistributionSystem_AFDS_pfSwitch_TankSwitchFailed
6 16	PortEngineSupplyFailed	SPARE		AircraftFuelDistributionSystem_AFDS_PortEngineSupplyFailed
	_PFSupplyFailed	OR		AircraftFuelDistributionSystem_AFDS_centralReservation_PFSupplyFailed
	CPVFailed	BE	Exp (λ: (SCV)/(1)), ζ: 0.0	AircraftFuelDistributionSystem_AFDS_centralReservation_cpv_CPVFailed
-	CPPFailed	BE	Exp (λ: (SCP)/(1)), ζ: 0.0	AircraftFuelDistributionSystem_AFDS_centralReservation_cpp_CPPFailed
	PortFeeldSupplyFailed (Expand Block)	BLOCK		AircraftFuelDistributionSystem_AFDS_portFeed_PortFeeldSupplyFailed

🖽 - 🛄 🖪 🌐 🐺 o 💁 🚠 🔶 🖬 ≫ Galileo param G7; param M5; param R6: param G1; toplevel "OWTFailed"; "OWTFailed" or "16_16" "FW7" "FW1" "FW2" "FW3" "WindTurbine_WindTurbineFailed" "MooringSystem_MooringSystemFailed" "Tower_TowerFailed" "SemiFloatingFoundation_SFFFailed"; "l6_l6" or "l6_FW4" "l6_FW5" "l6_FW6"; "FW7" lambda=FW7 dorm=1.0; "FW1" lambda=FW1 dorm=1.0: "FW2" lambda=FW2 dorm=1.0; "FW3" lambda=FW3 dorm=1.0; "WindTurbine_WindTurbineFailed" or "WindTurbine_W2" "WindTurbine_W3" "WindTurbine_W4" "WindTurbine_W7" "WindTurbine_W8" "WindTurbine_W9" "WindTurbine_W1" "WindTurbine W12" "WindTurbine RoterSystem RoterSystemFailed" "WindTurbine Sensors SensorsFailed" "WindTurbine Generator GeneratorFailed": "MooringSystem_MooringSystemFailed" or "MooringSystem_M7" "MooringSystem_I3" "MooringSystem_I4"; "Tower_TowerFailed" or "Tower_I2" "Tower_T1" "Tower_T2" "Tower_T3" "Tower_T10" "Tower_T4" "Tower_T9" "SemiFloatingFoundation_SFFFailed" or "SemiFloatingFoundation_F1" "SemiFloatingFoundation_13" "SemiFloatingFoundation_14" "SemiFloatingFoundation_F9"; "l6_FW4" lambda=FW4 dorm=1.0; "I6_FW5" lambda=FW5 dorm=1.0; "l6_FW6" lambda=FW6 dorm=1.0; "WindTurbine_W2" lambda=8e-06 dorm=1.0; "WindTurbine_W3" lambda=1e-05 dorm=1.0; "WindTurbine_W4" lambda=1e-05 dorm=1.0; "WindTurbine_W7" lambda=1.6e-05 dorm=1.0; "WindTurbine_W8" lambda=2e-06 dorm=1.0; "WindTurbine_W9" lambda=3.9e-05 dorm=1.0; "WindTurbine W10" lambda=1.3e-05 dorm=1.0: "WindTurbine_W11" lambda=4e-06 dorm=1.0; "WindTurbine_W12" lambda=3.3e-05 dorm=1.0; "WindTurbine_RoterSystem_RoterSystemFailed" or "WindTurbine_RoterSystem_R9" "WindTurbine_RoterSystem_13" "WindTurbine_RoterSystem_R1"; "WindTurbine_Sensors_SensorsFailed" vot2 "WindTurbine_Sensors_W61" "WindTurbine_Sensors_W62" "WindTurbine_Sensors_W63";

- Click on the icon to enable the navigator at the bottom of the screen.
- Click on the icon \blacksquare to show the grid on the screen.
- Click on the icon to show the summary information about each element on the screen.

- Click on the icon to display summary information about an element on hovering.
- Click on the icon **Q** to search for any element on the screen.

Failure Events

Failure events are basic and compound events (in the form of boolean equations on elements of a fault tree) that are important/relevant and their probabilities can be computed.

In the advanced view, "Failure Events" are visible in the left panel under each failure model. The "Failure Events" page has two tabs.

Basic

It will display all elements of the fault tree whose "Mark this as a failure event" checkbox is selected. Failures of such elements are important events whose probabilities can be computed.

Composite

On this tab, we can create compound events by writing boolean expressions on the other events (basic and compound).

Event Label Boolean expression on events that characterize the compound event Description Comp_event 139_EnginesFailed_failed & system_failed If a complete compound event If a complete compound event

O Add failure event

Click on the "Add failure event" to show a popup

Failure Event		
Event label* 1		
1		
Boolean expression * 🛈		
The above expression can use the following Event labels.		/
system_failed I39_EnginesFailed_failed Comp_event		
Description		
	Cancel	Add

Enter event label and boolean expression on existing events (shown below in the field "The above expression can use the following Event labels"). On filling in mandatory fields, click the "Add" button.

Parameter Sets

Each parameter set contains a list of parameters that are key-value pairs. They are used to specify values of e.g. probabilities, failure rates, etc. in fault tree models. By changing their values several variants of fault trees can be generated, which can then be compared with each other based on the results of metrics of interest. Each parameter set comprises:

- Constants
- Real-valued expressions
- Probability distributions (Exponential, Erlang, Weibull, Log-normal)
- Empirical probability distributions failure distributions generated from data sets.

View

Click the "Parameter Sets" under "Fault Tree Analysis" in the left panel to view all existing parameter sets.

Parameter Sets

Name	Description	Actions
NPPFallureRates		💁 🧵 🗡
NPP_RRS_Rates		🔷 🔋 🗡
ElectricPowerSupplyRates		🔷 🧵 🗡
CCompressorMonthlyFailureRates		🛆 🧵 🖍
HVDC_800KV_day		🛆 🧵 🖍
IPP_LOCA_Rates		🛆 🧵 🖍
IPP_LOCA_Rates_EPRateIncreased		🔷 🧵 🖍
NPP_LOCA_Rates_EPRateDecreased		🔷 🧵 🖍
AircraftFuelDistributionSystem		💁 🧵 🖍

O Add parameter set

Creation

Click the "Add parameter set" button to create a new parameter.

Import

Click the "Import parameter set" to import the parameter set in .ps format (a format in which parameter sets are imported/exported in our tool).

Export

Click the
Click the

Update

Click a parameter set to update its details

	Name*		Numeric Value*	Description	1
RPS_B1		0.00000228		B1 †Failure of all 5 rods	10
RPS_B2		0.00000192		B2 †Failure of electromagnets to disengage	1
RPS_B3		0.99999		B3 †NOR no electric power	10
RPS_B4		0.000697		B4 †Gate slow scram fails	10
RPS_B5		0.000697		B5 †Relay T3 stuck closed	100
RPS_B6		0.0235		B6 †Sensor fails to give signal	10
RPS_B7		0.000697		B7 †Relay T1 fails to open	10
RPS_B8		0.00000279		B8 †No electric power	10
RPS_B9		0.01		B9 †Human error	10
IPS_B10		0.99999		B10 å€ NOR no electric power	1
RPS_B11		0.00000279		B11 å€ No electric power	10
RPS_B12		0.0235		B12 å€ Sensor T2 fails	10
RPS_B13		0.000697		B13 †Relay T2 fails to open	10
RPS_B14		0.0235		B14 å€ Sensor fails to give signal	10
RPS_B15		0.000697		B15 å€ Relay T1 fails to open	10
RPS_B16		0.00000279		B16 å€ No electric power	10
CS_B1		0.000101		B1 †Gates of ventilation system fail to remain closed	10
CS_B2		0.0000144		B2 †Doors fail to remain closed	1
CS_B3		0.000324		B3 †Air pump # 2 fails to stop	10
S_B4		0.000324		B4 †Air pump # 1 fails to stop	10
S_B5		0.000324		B5 †Air pump # 3 fails to stop	10

Constants

Constants can only be numeric e.g. 4, 2.3, 4e-6 etc. Their value can be changed at the time of analysis. For example, graphs can be plotted for matric results against ranges of values of constants.

- Click "Add row" to enter a new row in the table.
- Click "Export" to export constants in a csv format.
- Click "Import" to import constants from a csv file.
- Click the [•] icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data. This action will save data in all the tabs.

Real-value Expressions

These are non-negative, real-value expressions, which can use constants (defined above) e.g. x + 2 where x is a constant. The grammar of the expression is given <u>here</u>.

- Click "Add row" to enter a new row in the table.
- Click "Export" to export expressions in a csv format.
- Click "Import" to import expressions from a csv file.
- Click the 🙂 icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data. This action will save data in all the tabs.

Name*	Value (Expression)*	Description	
к	1000	kilo	1
RODS	0.0000028/K	Failure of all roads (rate)	1
ELEC_MGN_SWT	0.00000192/K	Failure of electromagnetic switch to disengage (PFD)	1
RT3STK	0.032/K	Relay T3 stuck (PFD)	1
SCRM_GATE	0.000697/K	Gate of slow scram fails	1
RT1F0	0.000697/K	Relay T1 fails to open	1
SFGS	0.0235/K	Sensor fails to give signal	1
HE	0.01/K	Human error	1
RT2F0	0.000697/K	Relay T2 fails to open	1
LOSP	0.0001/K	Loss of grid power	1
AC_GEN	0.0027/K	AC Generator fails	1
DES_MTR	0.0082/K	Diesel motor fails	1
PSWH_STK_TRG	0.0032/K	Switch stuck (PFD)	1
РЅѠН	0.00000144/K	Power switch hardware failure	1
MBVFOP	0.0000036/K	Butterfly valve fails in open position (PFD)	1
DFCMBV	0.01/K	Operator fails to close butterfly valve (PFD)	1
05000V	0.01.0Z	On and a falle de mine almedide manufate method	

Failure distributions

Failure distributions can be exponential, erlang, Weibull, log-normal, and constant probability. Multiple distributions can be added by pressing the add row.

- Click "Add row" to enter a new row in the table.
- Click "Export" to export failure distributions in a csv format.
- Click "Import" to import failure distributions from a csv file.
- Click the [•] icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data. This action will save data in all the tabs.

Constants (1)	Expressions (1)	Failure distributions ()	Empirical failure dist. ()			
Name*			Distribution		Description	
dist1	Exponential distribution	~ Rate (λ)*	* 🛈 4			1
dist2	Weibull distribution	~ Rate (λ)*	* 🕄 3	Shape (ŋ)* 1 2		1

Save

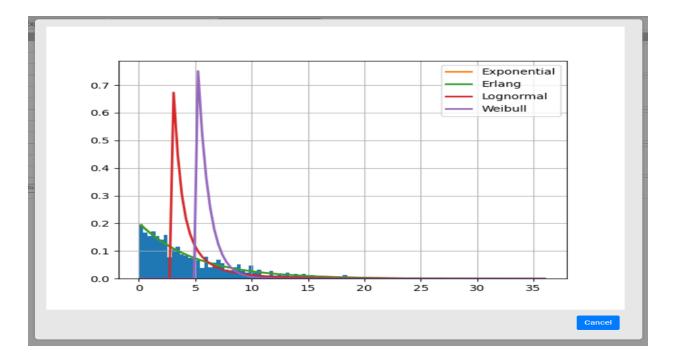
Empirical failure distributions

Empirical distributions are calculated from a data set using statistical methods. For that, historical failure data of a component is used to estimate the tentative failure probability distributions, which might have generated it, sorted according to their goodness-to-fit (GTF) values -- GTF value indicates the chance the data was generated by the corresponding distribution.

You can see how these distributions fit the data by clicking on the graph icon in the last column of their corresponding rows. Using Empirical distribution:

Each data may fit on multiple distributions, which are sorted according to their goodness-to-fit values, therefore we provide a radio button to select any distribution that we want to use.

Moreover, you can import and export empirical distributions (csv format) and use them in other projects.


Constants 🕚	Expressions (1)	Failure distributions 🜖	Empirical failure dist. ()	
Name	Goodness-to-fit	t	Distribution	Description
	63%	Exp (λ: 859.848794)		
distdata	O 62% Erlang (λ: 804.786359,		к: 1)	
uistuata	O 61%	Weibull (λ: 866.064271	Ι, η: 1.016585)	
	○ 19%	LogN (μ: 6.220604, σ: 1	1.169132)	
	63%	Exp (λ: 859.848794)		
testdata	○ 62%	Erlang (λ: 804.786359,	, к: 1)	
lesidala	0 61%	Weibull (λ: 866.064271	Ι, η: 1.016585)	
	○ 19%	LogN (μ: 6.220604, σ: 1	1.169132)	

Add distributions & Mix distributions & Export & Import & API

Save

- **Generating empirical distribution.** An empirical distribution can be added by clicking the "Add distribution" button. It will display all empirical distributions that have been generated previously and stored on the server side. One can compute a new distribution by specifying the file that contains data on which the distribution is to be approximated.
 - In the "Computed Distributions" table, Click the ^t icon in a row to add the distribution in the "Empirical Distributions" table in the main tab.
 - To generate a new distribution from data, enter the name of the distribution in the "Distribution Name" field, choose the data file from your drive, and click the "Compute" button. A new row will appear in the "Computed Distributions" table with a "running" status.
 - Click the "Refresh" button to check whether the distributions with "running" status have been computed.

Name	Status	Data	Action
		οι % weibuli (λ: 866.064271, η: 1.016585), 19 % LogN (μ: 6.220604, σ: 1.169132)	
adsfgasdgasdgfsxvasd	completed	63 % Exp (λ: 859.848794), 62 % Erlang (λ: 804.786359, κ: 1), 61 % Weibull (λ: 866.064271, η: 1.016585), 19 % LogN (μ: 6.220604, σ: 1.169132)	9 i
dsfgasdgasdgfsxvasdasdfasdf	completed	63 % Exp (λ: 859.848794), 62 % Erlang (λ: 804.786359, κ: 1), 61 % Weibull (λ: 866.064271, η: 1.016585), 19 % LogN (μ: 6.220604, σ: 1.169132)	0 1
estdata	completed	63 % Exp (λ: 859.848794), 62 % Erlang (λ: 804.786359, κ: 1), 61 % Weibull (λ: 866.064271, η: 1.016585), 19 % LogN (μ: 6.220604, σ: 1.169132)	0 1
listdata	completed	63 % Exp (λ: 859.848794), 62 % Erlang (λ: 804.786359, κ: 1), 61 % Weibull (λ: 866.064271, η: 1.016585), 19 % LogN (μ: 6.220604, σ: 1.169132)	0 1
			Refresh
Distribution Name*			
Load (comma separated) data to comput	e a distribution		

• **Generating mixture distribution:** a mixture distribution can also be generated by clicking the "Mix distributions" button. It will show a popup where distributions along with their weights can be added. For example, d3 = 0.3*d1 + 0.7*d2 is a mixture distribution, where d1 and d2 are existing (empirical) failure distributions in the "Failure distributions" and "Empirical failure distributions" tabs. Click the "Add row" button if you want to add more distributions to the mixture.

	Mix Distribution	
Name*		
Weight*	Distribution	
0.1	Failure distributions	
0.1	dist1 [Exp (λ: 4)] dist2 [Weibull (λ: 3, η: 2)]	
	Empirical distributions distdata [Exp (λ: 859.848794)] testdata [Exp (λ: 859.848794)]	
Add row		
	Cancel	dd

- Click the "Export" button to export empirical distributions in a JSON format (that includes the image data as well).
- Click the "Import" button to import empirical distributions in a JSON format (that includes the image data as well).
- Click the "Import via API" button to get empirical distributions that have been generated externally at a given API. The same data format can be accessed by clicking "Sample data in JSON format" on the popup.

API
Path *
http://localhost:8000/utils/computed-empirical-distributions/empirical/data
Sample data in JSON format
Cancel Import

Metrics

Metrics help us formally specify properties of interest we want to verify about failure models. There is a list of predefined metrics (classified into basic, complex, and Importance metrics). For advanced users, it is possible to define custom metrics using continuous stochastic logic (CSL).

In advance view "Metrics" link is visible in the left panel. Click on it, and a screen with four tabs: Basic, Complex, Criticality, and Custom will be visible.

Metrics						
Basic	Complex	Importance	Custom			
	Na	ame		Formula	Parameters	Labels
Unreliability				P=? [F<=time_bound system_failed]	time_bound	system_failed
Reliability				1 - P=? [F<=time_bound system_failed]	time_bound	system_failed
Average failure probability per unit time (AFH)			1/time_bound * P=? [F<=time_bound system_failed]	time_bound	system_failed	
Mean time to fa	ailure (MTTF)			T=? [F system_failed]	No parameters	system_failed

Basic

It contains four important metrics that are verified in most of the reliability analysis cases:

- Mean-time-to-failure. Expected time to system failure or scenario occurrence.
- Reliability: Probability of failure in a given time bound.
- Unreliability: The complement of reliability (1- Reliability).
- Average failure probability per hour.

Complex

It contains six metrics. These metrics cannot be verified directly by the Storm model-checker. They need some additional computations at the back end for their verification.

- Full Function Availability (FFA) describes the time-bounded probability that the system provides full functionality, i.e., it has neither failed nor degraded. It is described as the complement of the time-bounded reachability of a failed or degraded state.
- Failure Without Degradation (FWD) describes the time-bounded probability that the system fails without being degraded first. It is the time-bounded reach-avoid probability of reaching a failed state without reaching a degraded state.
- Mean Time from Degradation to Failure (MTDF) describes the expected time from the moment of degradation to system failure. It is obtained by taking the expected time of failure for each degraded state and scaling it with the probability of reaching this state while not being degraded before.
- Minimal Degraded Reliability (MDR) describes the criticality of degraded states by giving the worst-case failure probability when using the system in a degraded state. For all degraded states, the time-bounded reachability of a TLE failure is computed. The MDR is the minimum over the complement of this result for all degraded states.
- Failure under Limited Operation in Degradation (FLOD) describes the probability of failure when imposing a time limit for using a degraded system. For all degraded states, the time-bounded reachability probability of a failed state is computed within the restricted time-bound given by a drive cycle. This value is scaled by the time-bounded reach-avoid probability of reaching a degraded state without degradation before.
- System Integrity under Limited Fail-Operation (SILFO) considers the system-wide impact of limiting the degraded operation time. SILFO is split into two parts considering failures without degradation (FWD) and failures with degradation (FLOD).

Metrics			
Basic Complex Importance Custom			
Name	Formula	Parameters	Labels
Full function availability (FFA)	1 - P=? [F<=time_bound system_failed degraded]	time_bound	system_failed, degraded
Failure without degradation (FWD)	P=? [(!degraded) U<=time_bound (system_failed & !degraded)]	time_bound	system_failed, degraded
Mean time from degradation to failure (MTDF)	Σs∈degraded (P=? [(!degraded U s)] * T=? [F system_failed])	No parameters	system_failed, degraded
Minimal degraded reliability (MDR)	argmin _s ∈ degraded (1 - P ⁺ =? [F<=time_bound system_failed])	time_bound	system_failed, degraded
Failure under limited operation in degradation (FLOD)	Σs∈degraded(P=? [(!degraded) U<=time_bound s] * P'=? [F<=drive_cycle system_failed])	time_bound, drive_cycle	system_failed, degraded
System integrity under limited fail-operation (SILFO)	1 - (FWD + FLOD)	time_bound, drive_cycle	system_failed, degraded

Importance

It contains seven metrics. These metrics cannot be verified directly by the Storm model-checker. They need some additional computations at the back end for their verification.

Metrics			
Basic Complex Importance Custom			
Name	Formula	Parameters	Labels
Birnbaum Index (BI)	∂ Unr(system_failed, time_bound) / ∂ Unr(component_failed, time_bound)	time_bound	system_failed, component_failed
Criticality Importance (CI)	BI * Unr(component_failed, time_bound) / Unr(system_failed, time_bound)	time_bound	system_failed, component_failed
Risk Achievement Worth (RAW)	Unr(system_failed [p(component_failed) = 1], time_bound) / Unr(system_failed, time_bound)	time_bound	system_failed, component_failed
Risk Reduction Worth (RRW)	Unr(system_failed, time_bound)/ Unr(system_failed [p(component_failed) = 0], time_bound)	time_bound	system_failed, component_failed
Diagnostics Importance Factor (DIF)	Unr(system_failed & component_failed, time_bound)/ Unr(system_failed, time_bound)	time_bound	system_failed, component_failed
BAGT+	MTTF(system_failed) - MTTF (system_failed [p(component_failed) = 1)	No parameters	system_failed, component_failed
BAGT-	MTTF(system_failed) - MTTF (system_failed [p(component_failed) = 0)	No parameters	system_failed, component_failed

- Birnbaum Index (BI): How much the unreliability of the system depends on the unreliability of a specific component.
- Criticality Importance (CI): How much the unreliability of the system depends on the unreliability of a specific component scaled by the ratio of component and system unreliability.
- Risk Achievement Worth (RAW): The impact of the total degradation of the component on the system unreliability.
- Risk Reduction Worth (RRW): The impact of making the component fully reliable on the system's unreliability.
- Diagnostics Importance Factor (DIF): How often a component fails in states where the system has failed.
- BAGT+: Change in MTTF if the component fully degrades.
- BAGT-: Change in MTTF if the component is fully reliable.

Custom

One can create custom metrics on the "Custom" tab. It allows specifying metrics using continuous stochastic logic (CSL).

Matrica

wetrics							
Basic	Complex	Importance	Custom				
	Na	me		Formula	Parameters	Labels 🕚	Action
Rel				Pmax=? [true U[time_bound,time_bound] sfailed]	time_bound	sfailed	/ 📋
measure1				1 - Pmax=? [true U <time label1]<="" td=""><td>time</td><td>label1</td><td>1</td></time>	time	label1	1

Add metric Export metrics

• Click the "Add metric" button to add a new metric.

Custom Metric 🕚	
Name* 🕄	
Enter parameter and label names (comma separated) to be used in the below formula.	
Parameters 1	
Labels 1	
	/
Formula* 1	
	11
Description	
Cancel	Save

 Parameters and labels used inside metrics formulae must have unique names among themselves, starting with a letter or underscore (__) followed by underscores, letters, and/or numbers. They must not be from the list of keywords

- - true, false, Pin, Pmax, Smin, Smax, Tmin, Tmax, LAmin, LRAmax, P, R, T, S, LRA, min, max, G, U, F, W, C, I, failed.

- The formula can be defined using probabilistic computation tree logic (PCTL)/continuous stochastic logic (CSL). For example, P = ? [true U <=10000 (failed & ! mode1)], where failed and mode1 represent quantifiable states. The grammar of expressions is given <u>here</u>.
- The "Complement" checkbox can be selected in order to calculate the complement of a property mentioned in the formula field.
- Note that metric parameters which are entered on the above screen are exclusively dedicated to metrics. Their values are not taken from the parameter set that is attached to a failure model. However, their values can be changed at the time of analysis, and ranges for their values can be provided to draw plots.
- Click the "Export metrics"/"Import metrics" in order to export/import metrics in the .metrics format (a format supported by our SAFEST tool).

Computing

Failure models can be analyzed in different ways:

- Analysis the exact results of different metrics can be computed.
- Bounded Analysis the exact values of metrics can be bounded from above and below in a graphical way.
- Graphs the exact results of different metrics can be graphed against e.g. time.
- Interactive Simulation failure propagation in fault trees can be shown in an interactive way.
- Minimal Cut Sets for static fault trees MCS can be computed and displayed graphically.

(Exact) Analysis

Complex systems usually have dynamic behavior because of e.g. spare components, failure sequence among components, functional dependencies, etc. The analysis of such systems is quite complex which is usually based on simulation or generalization techniques. Unlike others, we implement formal verification techniques e.g. probabilistic model-checking, and thus provide exact results on measures of interest.

Click on the "Analysis" link under "Computing" in the left panel. The following window will appear with four tabs for different classes of metrics.

Analysis of M	Netrics							
Basic	Complex Imp	ortance Custom						
Unreliability Analyze All		Reliability	Average f	ailure probability per unit time	e (AFH) Mean time	to failure (MTTF)		
Results	Failure Model		N	fetric		Analysis		0
Name	Fault Tree Root	Parameter Set	Name	Parameters	Label -> Failure event	Results	Logs	
NPP_RPS	Root Element (Defa	J NPP_LOCA_Rates	Unreliability	time_bound: 20000 hour	system_failed: system_failed	0.6174902338	Ê	

 One can verify a metric on each tab, the mechanism is more or less the same. For example, click on the "Minimal degraded reliability (MDR)" link on the complex tab. The following window will appear:

		Analysis
Metric(s) *		
Minimal degraded reliability (MDR): arg	min₅ ∈ degra	ded (1 - P°=? [F<=time_bound system_failed])
Failure model*		
NPP_RPS		~
Fault tree root element	Root Elem	ent (Default)
Metric parameters		
Name		Value 🜖
time_bound	20	000
Assign failure event labels (of the model)	to metric la	pels
Metric label		Failure Event label
system_failed		system_failed
degraded		system_failed ~
Model parameter set 🟮		
NPP_LOCA_Rates		~
Constants		
Name		Value 🕚
ALARM_Rate_Factor	1	
POWER_Rate_Factor	1	
ECCS_Rate_Factor	1	
PIS_Rate_Factor	0.1	667
□ Simplify fault tree before analysis		
Output tab: Output tab: Output tab:		Results ~
		Cancel Start

- "Failure model" dropdown: a model that is selected as a default model in the "Failure Models" window is automatically selected.
- "Fault tree root element": the root element of the above-selected failure model's fault tree is selected by default. One can change the root element by selecting any other element in the dropdown. Note that the dropdown contains only those elements of the fault tree whose "Mark this as a failure event" checkbox is selected in the fault tree.
- "Metric parameters": Note that metric parameters cannot take values defined in the parameter set attached to the above-selected failure model. Each metric parameter has to be assigned a value. For the "time-bound" metric parameter, a default value is assigned to it that is associated with the above-selected failure model.

- "Assign failure event labels (of the model) to metric labels": Assign failure events of the models to metric labels.
- A parameter set that is attached to the selected failure model (above) is automatically selected. It can be changed at this point to generate another variant of the failure model.
- Optionally, change the values of "Constants" defined in the selected parameter set. Note that values of other elements of the parameter set (real-value expressions, (empirical) failure distributions) cannot be changed at the time of analysis.
- The analysis method is selected automatically based on the selected metric. However, for some metrics both Markov and Hybrid (BDD and/or Markov) analysis are possible. One can decide the analysis type by selecting the corresponding radio button.
- "Simplify fault tree before analysis": select this checkbox if the fault tree has to be simplified by applying simplification rules before analysis.
- Finally, select a tab on which the result of the analysis has to be displayed. It can be an existing tab or a new tab.
- Click the 🗐 icon to view the log of the analysis.

Logs
Hybrid Analysis
Simplification : false
******** Analysis Start **********
Fault Tree: DFT: <u>Download</u> <u>Open in new tab</u> <u>Load</u>
******************* Identify Modules – Dynamic: True ************************************
Identified Modules: Id: 20231103072532332998 Name: RPS
******************** Compute Modules Result ************************************
********* Markov Analysis Unreliability *********
Fault Tree:
DFT: Download Open in new tab Load Markov Analysis Unreliability Start:
DRN: Download
Markov Model Detail:
Model type: CTMC (sparse)
States: 4
Transitions: 6
Reward Models: none State Labels: 3 labels
* init -> 1 item(s)
* failed -> 1 item(s)
* RPS_failed -> 1 item(s)
Choice Labels: none
Result: 0.6174902337949751
Time Elapsed: 0.2625167919904925
Close

- Click the "Download" link to download the generated artifact (DFT/DRN).
- Click the "Open in new tab" link to open the generated artifact in a new browser tab.
- Click the "Load" link to load the generated DFT as a failure model in the current project.

Bounded analysis

In order to compute exact results for measures using Markov analysis, first of all, the full state space is constructed and then analyzed. However, many states in the state space only marginally contribute to the result. If one is interested in an approximation of the MTTF (or the reliability), these states are of minor interest. We implemented the algorithms, proposed by Dr. Matthias Volk et. al., that generate state space on-the-fly, and then compute an upper and a lower bound to the exact results on a partially unfolded system, which might be much smaller as compared to the fully unfolded system. The approximation is sound ensuring the exact result lies between these two bounds.

Click on the "Bounded Analysis" link under "Computing" in the left panel and then click e.g. "Mean-time-to-failure" link. The following window will appear:

Metric			Bounde	d Analysis				
Unreliability : P=? [F<=time_bound sys	stem_failedj							
Failure Model								
NPP_RPS								~
Fault tree root element	Root Eleme	Element (Default)					~	
Metric Parameters								
Name					Value	0		
time_bound		20000						
Assign failure event labels (of the model	l) to metric lab	els						
Metric label					Failure Eve	ent label		
system_failed		system_faile	ed					
Model parameter set* 🜖								
NPP_LOCA_Rates								~
Constants								
Name						Value		
ALARM_Rate_Factor			1					
POWER_Rate_Factor			1					
ECCS_Rate_Factor			1					
PIS_Rate_Factor			0.1667					
Error margin between upper and lower b	ound of the ac	tual value						
0								%
$\hfill\square$ Simplify fault tree before analysis								
Graph name* 🕚				Y-axis label*				
graph_1				Probability				
							Cancel	Start

- All fields are filled up as described in the "Analysis" case with a few additions:
- "Error margin between upper and lower bound of the actual value": A percentage error margin is entered in this field.
- Optionally enter "Graph name" and the label of its Y-axis. Note X-axis will always represent the number of iterations in this case.
- Bounded analysis is always done by the Markov technique.
- Click the "Start" button, the results will be displayed as:

Bounded Analysis of Metrics					
Basic					
Unreliability Mean ti	me to failure (MTTF)				
MTTF ×					
Model: CentCompSystem Parameter Set: CCompressorMonthlyFailureRates	Underlying model: CTMC States explored: 243753				🖹 💁 Default 🗸 🗸
Metric: Mean time to failure (MTTF) Metric Parameters:	Transitions explored: 708677 Current margin between upper and lower bound:	c			
40000	Lower-bound	Upper-bound			
35000					
30000					
25000					
LE 20000					
15000					
10000					
5000					
0-					
1 2 3		5 terations	6	7 1	9

The upper line in the graph shows the upper bound whereas the lower line shows the lower bound on the actual value of the metric.

- In addition, we show the number of generated states and the transitions explored so far.
- In case you are interested in further reducing the error margin, insert a new value in the text field and click the play button
- One can apply a log function on the values of the Y-axis by selecting it on the right side of the graph.
- The graph values can be downloaded by clicking on the <

Graphs

We provide an interface to plot and compare measures of interest e.g. reliability, MTTF, etc. against different parameters of interest. Click on the "Graphs" link under "Computing" in the left panel and then click "Reliability". The following window will appear:

Metric		Gra	aph				
Unreliability : P=? [F<=time_bound system_failed]							
Failure model							
NPP_RPS						~	
Fault tree root element	Root Element (Default)						
Metric Parameters							
	Sing	le point			ange		
Name		Value		Start	End	Step	
time_bound	0	20000	۲	2000	20000	2000	
Assign failure event labels (of the model) to metric labe	ls						
Metric label				Failure Event label			
system_failed	syste	m_failed					
Model parameter set* 1							
NPP_LOCA_Rates						~	
Constants							
	Singl	e point			nge		
Name		Value		Start	End	Step	
ALARM_Rate_Factor	۲	1	0	1	1	1	
POWER_Rate_Factor	۲	1	0	1	1	1	
ECCS_Rate_Factor	۲	1	0	1	1	1	
□ Simplify fault tree before analysis ☑ Graph	⊃ Existing	Analysis type: O	Markov	ov and/or BDD)			
Namat	Verieble	on X-axis		Y-axis label*			
Name* 🛈							
graph_1	time_	bound		✓ Probability			
						Cancel Start	

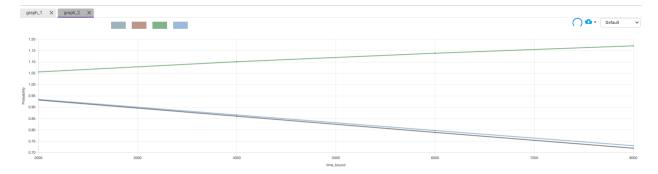
- All fields are filled up as described in the "Analysis" case with a few additions:
- One can specify a range of values of metric parameters as well as of Constants defined in the selected parameter set.
- A graph can be plotted on an existing graph as well that has the same variable on the X-axis.
- The variable on the X-axis of the graph can be selected either from the metric parameters or from the Constans of the selected parameter set.
- Click the "Start" button to display the graph:

Graph	s on Metrics										
Bas	ic Complex	Importance	Custom								
Unreliabi	elability Relability Average failure probability per unit time (AFH) Mean time to failure (MTFF)										
Unreliability Reliability Average failure probability per unit time (AFH) Mean time to failure (MTTF)											
Resul	ts 🔻										
Resul	ts 💌	Failure Model		Metri				Analys	is		
Resul	ts 🔹 Name	Failure Model FT Roo	: Parameter Set	Metrin Name	9 Parameters	Label -> Failure event	Progress	Analys Status	Graph	Info	

raph_1 ×									
								O •	Default 🗸
0.7									
0.7									
0.6									
0.5									
0.4									
0.3									
0.2									
0.1									
0 2000	4000	6000	8000	10000	12000	14000	16000	18000	20000

- Click the \diamondsuit icon to rerun the analysis and draw a graph.
- Click the icon to stop the running analysis.

• In the case of Importance measures, one can draw a plot for multiple components at the same time:



		Gr	aph				
Metric							
Birnbaum Index (BI) : a Unr(system_failed, time_bou	und) / ∂ Unr(component_	failed, time_bound)					
Failure model							
NPP_RPS						~	
Fault tree root element	ree root element Root Element (Default)						
Metric Parameters							
	Sin	gle point			nge		
Name		Value		Start	End	Step	
time_bound	0	20000	۲	2000	20000	2000	
Assign failure event labels (of the model) to metric labe	els						
Metric label				Failure Event label			
system_failed	sys	em_failed					
component_failed	ROD	2 RODS_failed					
Model parameter set* ()	🗹 ELE	ELEC_MGN_SWT_failed					
NPP_LOCA_Rates	Z RT3	STK_failed					
Constants	SCR	M_GATE_failed					
Name		A_SIGNAL_failed					
ALARM_Rate_Factor	EP0	WER_EPOWER_failed					
POWER_Rate_Factor	۲	1	0	1	1	1	
ECCS_Rate_Factor	۲	1	0	1	1	1	
□ Simplify fault tree before analysis		Analysis type:	Markov 🔍 Mybrid (Mark	ov and/or BDD)			
Graph 💿 New	C Existing						
Name* 🕚	Variabl	e on X-axis		Y-axis label*			
graph_2	time	_bound		✓ Probability			
						Cancel Start	

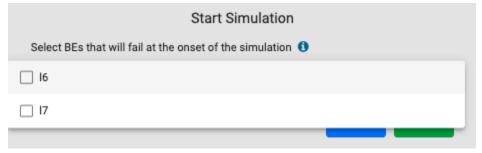
Graphs on Metrics			
Basic Complex Importance Custom			
Birnbaum Index (BI)	Criticality Importance (CI)	Risk Achievement Worth (RAW)	Risk Reduction Worth (RRW)
Diagnostics Importance Factor (DIF)	BAGT+	BAGT-	

Results -

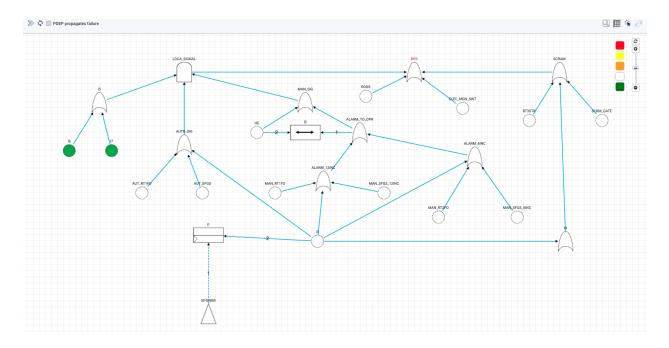
	F	ailure Model		Metric			Analysis				
Exp	Name	FT Root	Parameter Set	Name	Parameters	Label -> Failure event	Progress	Status	Graph	Info	
2	NPP_RPS	Root Element (D.,	NPP_LOCA_Rates	Birnbaum Index (Bi)	time bound: 2000-20000	component_failed: RODS_failed,ELEC_MGN_SWT_f ailed,RT3STK_failed,SCRM_GAT E_failed	40%	running	graph_2	ê •	
1	NPP_RPS	Root Element (D	NPP_LOCA_Rates	Unreliability	time_bound: 2000-20000		100%	complete	graph_1	🗐 🗘 🔷	0

Interactive simulation

The idea is to interactively visualize a sequence of failures in a DFT. The user would start with a usual DFT and could select one of the basic events (BE) that should fail first. Based on this, the status of each DFT element (failed, operational, fail-safe, claiming in SPAREs, etc.) is redetermined and then visualized. Afterward, another BE can be selected to fail, and so forth. The main benefit of this feature is that the semantics of DFTs become much clearer as users can try out the behavior by themselves.


Click on the "Interactive Simulation" link under "Computing" in the left tab. The following screen will appear.

• Click on the icon it to start the simulation. The user will be prompted to select a failure model and a parameter set as:


Simulation	ı
Failure Model	
NPP_RPS	~
Select parameter set* 1	
NPP_LOCA_Rates	~
	Cancel Select

• Click the icon to start the simulation. The user will be prompted to select BEs, having constant probability distribution, that will be failed on start. On clicking the "Start" button, the simulation will start.

- "PDEP propagates failure" checkbox is selected. That means if the trigger of any PDEP fails, the gate will fail all its dependent BEs. Currently, the checkbox is disabled, which will be enabled in the next releases to give more flexibility in simulation.
- All basic events (BEs) that can fail are shown in green.
- The user clicks any green BE to fail it. Its color will be turned into Red. After this, BEs that are operational and cannot fail currently remain White, those that are in a fail-safe state are Orange, and those that are in a dont-care state are Yellow.
- The user keeps on failing green BEs, and in return, the failure keeps on moving up the tree until the top-level event turns Red showing the failure of the top-level event.

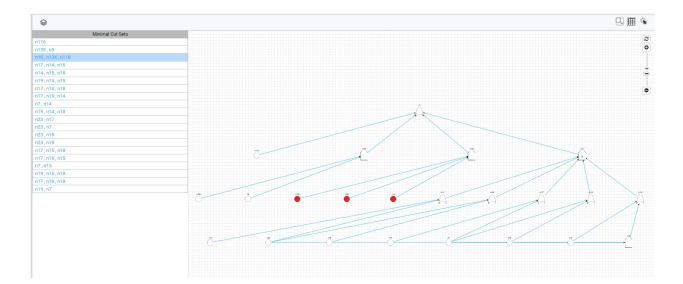
• Users can restart the simulation by clicking on the icon $\, \heartsuit \, .$

Minimal cut set (for static fault trees)

Cut sets represent sets of BEs whose failure leads to the failure of the top-level element of a fault tree. A minimal cut set is a set whose proper subset cannot be a cut set itself. Cut sets cannot be calculated for dynamic fault trees because of the dynamic nature of the system.

Click on the "Minimal cut set" link under "Computing" in the left tab. The following screen will appear.

\$		


Click on the icon is to start. The user will be prompted to select a failure model and a parameter set as:

Failure Model	Minimal Cut Set		
NPP_RPS			~
Select parameter set* 🜖			
NPP_LOCA_Rates			~
		Cancel	Find

On clicking "Find", minimal cut sets are computed and displayed on the screen as:

- All minimal cut sets will be shown on the left of the screen.
- On clicking a cut set, the corresponding BEs will be highlighted (in Red) in the tree.

4. Bowtie Analysis Module

It contains all bowtie models (event trees) along with their parameter sets, loss sets, consequence sets, and computing methods.

Parameter Sets

Each parameter set contains a list of parameters that are key-value pairs. They are used to specify values of e.g. probabilities, failure rates, etc. in fault tree models. By changing their values several variants of fault trees can be generated, which can then be compared with each other based on the results of metrics of interest. Each parameter set comprises:

- Constants
- Real-valued expressions

View

Click the "Parameter Sets" under "Fault Tree Analysis" in the left panel to view all existing parameter sets.

Parameter Sets

Name	Description	Actions
NPPFailureRates		💁 🧵 🖍
NPP_RRS_Rates		🐴 🔋 🖍
ElectricPowerSupplyRates		🔷 📋 🖍
CCompressorMonthlyFailureRates		🔷 🧵 🖍
HVDC_800KV_day		🛆 🧵 🖍
NPP_LOCA_Rates		🔷 🧵 🖍
NPP_LOCA_Rates_EPRateIncreased		🔷 🧵 🖍
NPP_LOCA_Rates_EPRateDecreased		🔷 🧵 🖍
AircraftFuelDistributionSystem		🔷 🧵 🖍

Add parameter set

Creation

Click the "Add parameter set" button to create a new parameter.

Import

Click the "Import parameter set" to import the parameter set in .ps format (a format in which parameter sets are imported/exported in our tool).

Export

Click the 🕓 icon to export a parameter set in .ps format.

Update

Click a parameter set to update its details

Name*	Value(Numeric Constants)*	Description	
RPS_B1	0.00000228	B1 †Failure of all 5 rods	1
RPS_B2	0.00000192	B2 †Failure of electromagnets to disengage	1
RPS_B3	0.99999	B3 †NOR no electric power	
RPS_84	0.000697	B4 †Gate slow scram fails	i (
RPS_B5	0.000697	B5 †Relay T3 stuck closed	i (
RPS_B6	0.0235	B6 †Sensor fails to give signal	1
RPS_B7	0.000697	B7 †Relay T1 fails to open	
RPS_88	0.00000279	B8 å€ No electric power	
RPS_89	0.01	B9 †Human error	
RPS_B10	0.99999	B10 å € NOR no electric power	
RPS_B11	0.00000279	B11 †No electric power	
RPS_B12	0.0235	B12 å€ Sensor T2 fails	
RPS_B13	0.000697	B13 å€ Relay T2 fails to open	
RPS_B14	0.0235	B14 〠Sensor fails to give signal	
RPS_B15	0.000697	B15 †Relay T1 fails to open	
RPS_B16	0.00000279	B16 å€ No electric power	
CS_B1	0.000101	B1 †Gates of ventilation system fail to remain closed	
CS_82	0.0000144	B2 †Doors fail to remain closed	
S_B3	0.000324	B3 〠Air pump # 2 fails to stop	1
CS_B4	0.000324	B4 †Air pump # 1 fails to stop	
CS_B5	0.000324	B5 å€ Air pump # 3 fails to stop	1

Save

Constant

Constants can only be numeric e.g. 4, 2.3, 4e-6 etc. Their value can be changed at the time of analysis. For example, graphs can be plotted for matric results against ranges of values of constants.

- Click "Add row" to enter a new row in the table.
- Click "Export" to export constants in a csv format.
- Click "Import" to import constants from a csv file.
- Click the [•] icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data. This action will save data in all the tabs.

Real-value Expressions

These are non-negative, real-value expressions, which can use constants (defined above) e.g. x + 2 where x is a constant. The grammar of the expression is given <u>here</u>.

- Click "Add row" to enter a new row in the table.
- Click "Export" to export expressions in a csv format.
- Click "Import" to import expressions from a csv file.
- Click the 🙂 icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data. This action will save data in all the tabs.

Constants 🕄	Expressions 🚯			
	Name*	Value (Expression)*	Description	1
Exp1		0.5		10
Exp2		1-Exp1		i 🕄
Exp3		Exp1 * Exp2		10

O Add row D Export D Import	
	Sava

Loss Sets

A loss set contains quantities along with their units and descriptions. These quantities can be assigned values at nodes/states of event trees. During analysis, their expected values are calculated by the analysis algorithms.

Click the "Loss Sets" under "Bowtie Analysis" in the left panel to view all existing parameter sets.

Name	Description	Actions
LossQuantities		💁 🖡 🖍
LossQuantities1		💁 🧵 🗡
RadioactiveReleases		🕰 🧵 🖍
LOCA_Losses		💁 🧵 🗡
LOCA_Losses1		💁 🧵 🗡
LOCA_Losses11		💁 🧵 🗡
LOCA_Losses12		💁 🧵 🗡
LOCA_Losses13		💁 🧵 🗡
LOCA_Losses14		💁 🧵 🗡

Add loss set

- Click the "Add loss set" button to create a new loss set.
- Click the "Import loss set" to import the loss set in .rs format (a format in which loss sets are imported/exported in our tool).
- Click the 📤 icon to export a loss set in .rs format.
- Click a loss set to view its details

Quantity* 🚯	Unit	Description	1
CasualitiesBy5pcCD	Lives	Loss of human lives at 5% Core Damage	10
RadionuclideBySpcCD	Million Curies	Radionuclides escaped at 5% Core Damage	10
ContaminatedLandBy5pcCD	Square Miles	Farmland and Forest contaminated at 5% Core Damage	10
CasualitiesBy10pcCD	Lives	Loss of human lives at 10% Core Damage	10
RadionuclideBy10pcCD	Million Curies	Radionuclides escaped at 10% Core Damage	10
ContaminatedLandBy10pcCD	Square Miles	Farmland and Forest contaminated at 10% Core Damage	10
CasualitiesBy30pcCD	Lives	Loss of human lives at 30% Core Damage	10
RadionuclideBy30pcCD	Million Curies	Radionuclides escaped at 30% Core Damage	10
ContaminatedLandBy30pcCD	Square Miles	Farmland and Forest contaminated at 30% Core Damage	10
CasualitiesBy50pcCD	Lives	Loss of human lives at 50% Core Damage	10
RadionuclideBy50pcCD	Million Curies	Radionuclides escaped at 50% Core Damage	10
ContaminatedLandBy50pcCD	Square Miles	Farmland and Forest contaminated at 50% Core Damage	10
CasualitiesBy100pcCD	Lives	Loss of human lives at 100% Core Damage	10
RadionuclideBy100pcCD	Million Curies	Radionuclides escaped at 100% Core Damage	10
ContaminatedLandRy100pcC0	Square Miles	Farmland and Forest contaminated at 100% Core Damage	10

O Add row

- Click the "Add row" button to add a new loss quantity in the above table.
- Click the \bigcirc icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data.
- Click "Export" to export loss in a csv format.

Save

• Click "Import" to import consequences in a csv format.

Consequence Sets

A consequence set contains outcomes along with their descriptions. These outcomes can be assigned to nodes/states in event trees. During analysis, their expected frequencies/probabilities are calculated by the analysis algorithms.

Click the "Consequence Sets" under "Bowtie Analysis" in the left panel to view all existing parameter sets.

Name	Description	Actions
LOCA_Consequencies		💁 🧵 🗡
ConSet		💁 🧵 🗡
ConSet1		💁 🧵 🗡
LOCA_Releases		🛆 🧵 🗡
LOCA_Releases1		💁 🧵 🗡
LOCA_Releases2		🛆 🖡 🖊
LOCA_Releases3		o i /
LOCA_Releases4		🛆 🔋 🖊

Add consequence set

- Click the "Add consequence set" button to create a new consequence set.
- Click the "Import consequence set" to import a consequence set in .cs format (a format in which loss sets are imported/exported in our tool).
- Click the 📀 icon to export a consequence set in .cs format.
- Click a consequence set to view its details

Save

No Release	10
Low Release	10
Low Release	i 😏
Low Release	i 😏
Low Release	10
High Release	10
High Release	i 🔾
High Release	i 😏
Small Release	i 😏
Small Release	10
Small Release	i 🔾
Medium Release	i 😏
Medium Release	i 😏
Medium Release	10
High Release	10
High Release	i 🔾
High Release	10
	Low Release Low Release Low Release Low Release Righ Release Righ Release Small Release Small Release Middum Release Middum Release Middum Release Middum Release Middum Release High Release High Release High Release High Release High Release

O Add row

- Click the "Add row" button to add a new consequence in the above table.
- Click the \bigcirc icon in the last column of any row to add a new row above it.
- Click the "Save" button to save the data.
- Click "Export" to export consequences in a csv format.

Bowtie Models

It contains multiple Bowtie models represented as event trees in a graphical way.

View

Click on the "Bowtie Models" under "Bowtie Analysis" in the left panel to display all Bowtie models in a table. A model that is worked upon the most can be selected as a default model by selecting the corresponding radio button.

Bowtie Models

Model	Consequence Set	Loss Set	Parameter Set	Default	Actions
LOCA ET	LOCA_Consequencies	RadioactiveReleases	Constantssss	۲	🛆 📋
Grid_Failure_Analysis	ConSet	LossQuantities		0	🛆 📋
Grid_Failure_Analysis1	ConSet1	LossQuantities1		0	🛆 📋
Loss of Coolant Accident (LOCA)	LOCA_Releases	LOCA_Losses1	LOCA_Constants	0	🛆 📋
test	LOCA_Consequencies			0	🛆 📋
Loss of Coolant Accident (LOCA)_ECCS_Uncertanity	LOCA_Releases1	LOCA_Losses11	LOCA_Constants	0	🛆 📋
Loss of Coolant Accident (LOCA)_Decision	LOCA_Releases4	LOCA_Losses14	LOCA_Constants	0	🛆 📋
testy	LOCA_Consequencies	LOCA_Losses1	LOCA_Constants	0	❹ 🔋

Add Bowtie model

Creation

Click the "Add Bowtie model" to create a new model.

New Bow	rtie Model
Name*	
Consequence set*	
None	~
Loss set	
None	~
Parameter set	
None	~
Time of the accidental event*	
100	hours ~
	Cancel Save

Enter all mandatory fields and click the "Save" button.

Export

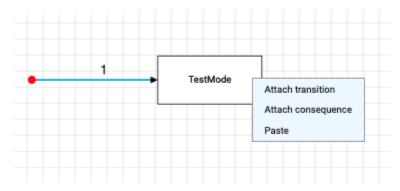
Click the \bigcirc icon in the corresponding row to download the bowtie model in .et format (a format used in the SAFEST tool to import/export bowtie models).

Import

Click the "Import Bowtie model" button to import a Bowtie model (saved in .et format) from your drive.

Update

Click on the model in the table to open it in the canvas.


- Hobdomy	1				
○ Frequency (f)					
\bigcirc Probability from a failure model	Failure model	None	Model event	None	~
Event name					
				Cancel	Save

For the Accidental Event, select the respective radio button to enter its:

- Probability,
- Probability from a failure model The "Failure model" dropdown will be filled with all failure models that exist under the "Failure models" under the "Fault Tree Analysis" in the left panel. Now select a failure model from the "Failure model" dropdown, it will populate the "Model event" dropdown with all the failure events (basic as well as compound) defined for the selected failure model. Now select an event from the "Model event" dropdown. It will populate the "Event name" field with the name of the model concatenated with the name of the event. One can update it to make the name simple.
- Frequency

Optionally enter the name of the event in the "Event name" field.

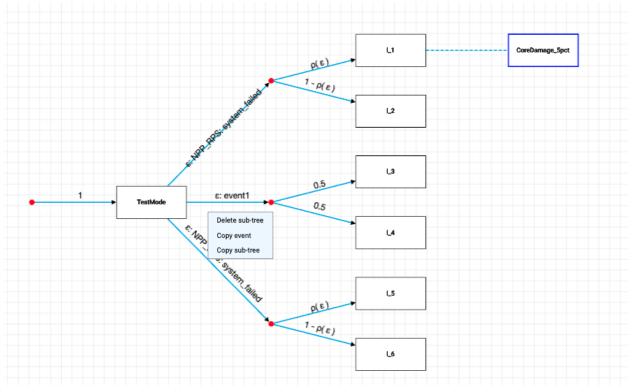
 Right-click on a node in order to add a transition, a consequence, or past a transition (which is already copied).

• Click the "Attach transition" to add a new transition from the selected node. You can add multiple transitions from a given node. Note that a transition can only be attached with a node having no consequence attached to it.

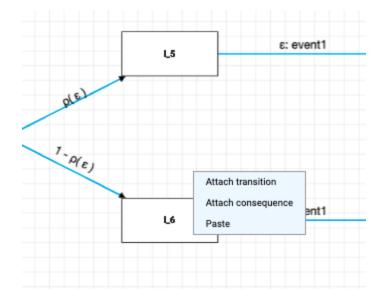
	Trans	ition	
Event © User defined O Event from a failure model Event name (s)	Failure model None	V Model event None	~
Next states	Transition probability function (p)* 0.5 0.5	Transition losses	•
(O Add)			Cancel Save

- The event that triggers the transition can be
 - User-defined, or
 - Event from a failure model (DFT).
- In case the event is from a failure model (fault tree), select the "Event from a failure model" radion button.
 - It will populate the "Failure model" with all failure models that exist under the "Failure models" under the "Fault Tree Analysis" in the left panel.
 - Now select a failure model from the "Failure model" dropdown, it will populate the "Model event" dropdown with all the failure events (basic as well as compound) defined for the selected failure model.
 - Select an event from the "Model event" dropdown. It will populate the "Event name" field with the name of the model concatenated with the name of the event. One can update it to make the name simple. It will also add two rows in the "Next States" table - one is annotated with the probability of the occurrence of the event and the other one with its complement.
 - Note that only two branches are possible when the triggering event is taken from a failure model.

		Transition				
vent O User defined						
 User defined Event from a failure model 	Failure model	NPP_PIS	~	Model event	system_failed	~
Event name (ϵ) *				inouch croint	oyotom_randa	
PIS_Failure						
ext states						
State name*		Transition probabil	ty function (a)			
PIS_OPERATED		1 - ρ(ε)	ty function (p)			↓ =
PIS_FAILED		ρ(ε)				
						-
Add						
					Cance	l Save


- One can update the names of the next states.
- In case the event is user-defined, select the "User-defined" radio button. Fill up the name of the event.
 - Multiple branches of transition can be added in this case. Click the "Add" button to add a new branch in the "Next States" table.
 - Add transition probability function for each branch of transition. It can be a constant value, a constant parameter, or an expression parameter. Note that the constant parameter or the expression parameter should be defined in a parameter set and attached to the model before analysis.
 - Note that the sum of probabilities of all branches should be equal to one.
 Otherwise, there will be an error at the time of analysis.
- Click a transition to update it. The popup, which comes up while adding a new transition, will appear.
- Click on a transition branch to update it. The following popup comes up. One can update the transition probability only if it has been specified by the User i.e. it is not computed from an attached fault tree.

	Tra	nsition Bran	ich	
Transition probabili	ty function (ρ)			
1-ρ(ε)				
			Cancel	Save


• Right-click on a transition in order to copy/delete a sub-tree originating from the transition, or copy the transition (along with its branches).

• Copy a transition/sub-tree and then right-click on a node in order to paste it. Note that transition branches cannot be copy-pasted individually.

• Click the "Attach consequence" in order to attach a consequence with a node. All consequences in the "Consequence Set" attached to the model will be available in the "Title" dropdown. Select one of the consequences and click the "Save" button. Note that a consequence can be attached to a node if and only if there is no other transition attached to the node.

	Consequenc	e		
Title				
CoreDamage_5pct				~
Description				
			Cancel	Save

- Click on the icon $\stackrel{\square}{\square}$ to enable the navigator at the bottom of the screen.
- Click on the icon \blacksquare to show the grid on the screen.
- Click on the icon to show the summary information about each element on the screen.

L_5 ContLand_10pcCD: 4455,ContLand_50pcCD: 334 p(ε)	CoreDamage_5pct	
ContLand_10pcCD: 4455,ContLand_50pcCD: 334		
4455,ContLand_50pcCD: 334 ρ(ε)		
334 ρ(ε)		
P(E)	em_failed $1 - \rho(\varepsilon)$	

- Click on the icon it display summary information about an element on hovering.
- Click on the icon **Q** to search for any element on the screen.

Computing

Bowtie models can be analyzed for consequence frequencies/probabilities and expected values of (loss) quantities.

- Analysis the exact results of consequence frequencies/probabilities and expected values of (loss) quantities can be computed.
- Graphs the exact results of consequence frequencies/probabilities and expected values of (loss) quantities can be graphed against time duration.

(Exact) Analysis

Click on the "Analysis" link under "Computing" in the left panel. The following window will appear.

Bowtie Analysis 😌

Click the icon and the following popup will show up:

	Bowtie Analysis
Bowtie model*	
LOCA ET	~
Parameter set* 📵	
Constantsssss	~
Constants	
Name	Value 🚯
RPS_B1	0.0000228
RPS_B2	0.00000192
RPS_B3	0.99999
RPS_B4	0.000697
Time of the accidental eve	ent*
0.5	
Output tab*	
Result_1	
	Cancel Start

- Select the bowtie model that you want to analyze from the "Bowtie mode" dropdown it shows all bowtie models that exist under the "Bowtie Models" in the left panel.
- Change the parameter set if needed. The selected parameter set should contain all constants/expressions that have been used in the bowtie model as parameters.
- The constants defined in the selected parameter set (above) are shown in the table, which can be updated if needed.
- "Specify time bound to calculate the probabilities of fault tree events attached with transitions of the bowtie model" field contains the default value associated with the selected bowtie model (above). It can be updated here if needed. The failure probability of all failure models attached to the selected bowtie model will be analyzed for this time-bound.
- Enter the name of the tab where the results of the analysis will be displayed.
- Click the "Start" button to start the analysis.

Res	ult_1 ×	
		Bowtie Analysis
	of Coolant Accident (LOCA) of the accidental event: 20000 hours	
	ental event frequency: 0.000251	
Cons	equence Frequencies	
Index	Consequence	Expected Frequency [min, max]
0	CoreDamage_5pct	0.00002979530345921739
1	CoreDamage_10pct	0.00005518995831577617
2	CoreDamage_30pct	0.000048098925896585604
3	CoreDamage_50pct	0.000010666156762987408
4	CoreDamage_100pct	0.0001072496555654334
Expe	cted Losses	
Index	Losses	Expected Value [min, max]
0	CasualitiesBy5pcCD	0 Lives
1	RadionuclideBy5pcCD	0 Million Curies
2	ContaminatedLandBy5pcCD	0 Square Miles
3	CasualitiesBy10pcCD	0 Lives
4	RadionuclideBy10pcCD	0 Million Curies
5	ContaminatedLandBy10pcCD	0 Square Miles
6	CasualitiesBy30pcCD	0.000048098925896585604 Lives
7	RadionuclideBy30pcCD	0.00048098925896585606 Million Curies
8	ContaminatedLandBy30pcCD	0.00240494629482928 Square Miles
9	CasualitiesBy50pcCD	0.000053330783814937054 Lives
10	RadionuclideBy50pcCD	0.0006399694057792447 Million Curies
11	ContaminatedLandBy50pcCD	0.0021332313525974822 Square Miles
12	CasualitiesBy100pcCD	0.00536248277827167 Lives
13	RadionuclideBy100pcCD	0.019841186279605176 Million Curies
14	ContaminatedLandBy100pcCD	0.11261213834370508 Square Miles

• Click the 🖨 icon to view the log of the analysis.

Logs	
Hybrid Analysis	
Simplification : false	
*********** Analysis Start **********	
Fault Tree:	
DFT: <u>Download</u> <u>Open in new tab</u> <u>Load</u>	

Identified Modules:	
Id: 20231103072532332998 Name: RPS	
*********************** Compute Modules Result ************************************	
******** Markov Analysis Unreliability *********	
Fault Tree:	
DFT: Download Open in new tab Load Markov Analysis Unreliability Start:	
DRN: Download	
Markov Model Detail:	
Model type: CTMC (sparse)	
States: 4	
Transitions: 6 Reward Models: none	
State Labels: 3 labels	
* init -> 1 item(s)	
* failed -> 1 item(s)	
* RPS_failed -> 1 item(s)	
Choice Labels: none	
Result: 0.6174902337949751	
Time Elapsed: 0.2625167919904925	
Close	

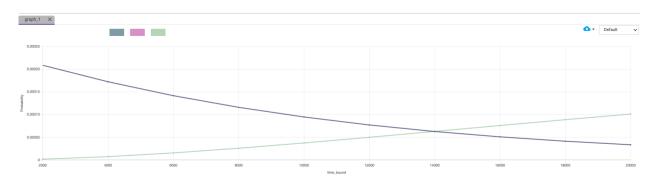
- Click the "Download" link to download the generated artifact (DFT/DRN).
- Click the "Open in new tab" link to open the generated artifact in a new browser tab.
- Click the "Load" link to load the generated DFT as a failure model in the current project.
- Click the 📀 icon to download the results in the selected rows in a csv format.

Graphs

We provide an interface to plot consequence probabilities/frequencies or expected values of loss quantities against different parameters of interest. Click on the "Graphs" link under "Computing" in the left panel. Click the "Consequence/Expected Loss", and the following window will appear:

		G	aph			
Consequence probability: P=? [true U "consec"]						
2 Max 🗆 Min						
Sowtie model						
LOCA ET						
ssign model consequences to metric label						
Metric label				Consequences		
consec	ES	31				
Parameter set* 🟮						
Constantsssss						
Constants						
	S	ingle point			Range	
Name		Value		Start	End	Step
RPS_B1	۲	0.0000228	0	1	0.00000228	1
RPS_B2	۲	0.00000192	0	1	0.00000192	1
RPS_B3	۲	0.99999	0	1	0.99999	1
Specify time bound to calculate the probabilities of faul	t tree events attached v	with transitions of the bowtie m	odel			
		Single point			Range	
Name		Value		Start	End	Step
time_bound	0	0.5	•	0.05	0.5	0.05
Graph New Existing						
lame* ()	Varia	ble on X-axis		Y-axis label*		
graph_1	tir	ne_bound		✓ Probability		
						Cancel Star

- Select whether the min, max, or both values of consequences probabilities/frequencies (expected loss) are to be computed.
- "Bowtie model" dropdown: a model that is selected as a default model in the "Bowtie Models" page is automatically selected.
- "Assign mode consequences (quantities) to metric labels (parameter)": Select (multiple) consequence(s) (quantities) from the dropdown for which we want to measure probabilities/frequencies (expected values).



- A parameter set which is attached with the selected bowtie model (above) is automatically selected. It can be changed at this point to generate another variant of the model.
- One can specify a range of values of time-bound as well as of constants defined in the selected parameter set.
- Select whether to draw a new graph or it is to be plotted on an existing graph that has the same variable on X-axis.
- The variable on the X-axis of the graph can be either time-bound or from the constraints of the selected parameter set.
- Click the "Start" button to display the graph:

Graphs	on	Metric

Conser	quence ed Loss									
	ts 🔹									
	Bowtie M	odel		Metric			Analy	rsis		Î
Ехр	Bowtie M Name	odel Parameter Set	Name	Metric Parameter -> Quantity	Label -> Consequence	Progress	Analy Status	Graph	Info	
			Name Consequence frequency		Label -> Consequence consec: CoreDamage_5pct, CoreDamage_100pct				Info	-

- Click the licon to stop the running analysis.
- Click the 🗘 icon to rerun the analysis and draw a graph.

5. Annotation of SysML Models with Safety Information

In order to annotate SysML model elements with safety information, we have created a few packages, which are to be used inside the SysML models against which fault trees are to be generated. These packages are:

• DGBMetadata: It contains a package DFTElements with the following sub-packages and elements:

DFTGates package: It defines all gates that are used to construct fault trees.
 package DFTGates {

```
metadata def AND;
        metadata def OR;
        metadata def VOT {
            /* if any k-out-of-n components fail (input events),
            the system will fail (output event) n number of input events */
            attribute k : Number;
        }
        metadata def SPARE;
        metadata def PAND;
        metadata def POR;
        metadata def FDEP {
            /* The failure of the trigger_element renders the children of FDEP failed
            as per the value of probability attribute. The default value of probability
            is 1. */
            occurrence trigger_element;
            attribute probability: Real;
        }
        metadata def FSEO;
        metadata def MUTEX:
    }
• DFTBEs package: It defines all basic elements that may be used in fault trees.
   package DFTBEs{
       abstract metadata def BE{
            /* The value of dormancy attribute is only relevant if the BE is a
            child of a spare spare gate. The default value of dormancy is 1. */
            attribute dormancy:Real;
       }
       abstract metadata def BE CONSTANT DISTRIBUTION specializes BE {
            attribute prob:Real;
       3
       abstract metadata def BE EXPONENTIAL DISTRIBUTION specializes BE {
            attribute rate:Real;
       }
       abstract metadata def BE ERLANG DISTRIBUTION specializes BE {
            attribute rate:Real;
            attribute phases:Real;
       3
       abstract metadata def BE_NORMAL_DISTRIBUTION specializes BE {
            attribute mean:Real;
            attribute stddev:Real;
       }
       abstract metadata def BE_WEIBULL_DISTRIBUTION specializes BE {
            attribute rate:Real;
            attribute shape:Real;
       }
   }
```


- TOP_LEVEL metadata: It is used to annotate an element of a fault tree as a top-level element. More than one element can be annotated as top-level elements. This helps generate multiple fault trees (for different scenarios) collectively that may share Gates and BEs.
- FailureModes: It defines all failure modes that may be used to annotate elements of SysML models with safety information. At the moment we allow failure modes to be modeled with the following failure distributions:
 - Exponential distribution
 - Erlang distribution
 - Weibull distribution
 - Log-normal distribution, and
 - Constant distribution

Moreover, within this package, we allow to define model constants as (DFTParameters) enumerations. These constants can be used to define failure rates, probabilities, shapes, etc. of failure modes.

package FailureModes {

```
import DGBMetadata::DFTElements::*;
/* DFTParameters enumiration defines constants used to annotate
failure rates/probabilites/shares/etc. of BEs in fault trees. */
enum def DFTParameters :> Real {
    FIT1 = 0.00000001;
    FIT2 = 0.00000002;
    FIT3 = 0.00000003;
    FIT4 = 0.000000004;
    prob = 0.2;
    param1 = 10.2;
    param2 = 1.1;
}
metadata def FIT1 specializes BE_EXPONENTIAL_DISTRIBUTION{
        attribute redefines rate = DFTParameters::FIT1;
}
metadata def FIT2 specializes BE_EXPONENTIAL_DISTRIBUTION{
        attribute redefines rate = DFTParameters::FIT2;
}
metadata def FM1 specializes BE_CONSTANT_DISTRIBUTION{
        attribute redefines prob = DFTParameters::prob;
}
metadata def FIT3 specializes BE_ERLANG_DISTRIBUTION{
        attribute redefines rate = DFTParameters::FIT3;
        attribute redefines phases = 2;
}
metadata def FM_4 specializes BE_NORMAL_DISTRIBUTION{
        attribute redefines mean = DFTParameters::param1;
        attribute redefines stddev = DFTParameters::param2;
}
metadata def FIT4 specializes BE_WEIBULL_DISTRIBUTION{
        attribute redefines rate = DFTParameters::FIT4;
        attribute redefines shape = 3;
 }
```

Laptop Example.

}

The following example explains how elements within the SysML model can be annotated to generate fault trees out of them.


```
package LaptopPackage {
    import FailureModes::*;
    part Laptop {
        part CPU1 {
            metadata Failure:FIT2;
        }
        part CPU2 {
            metadata Failure:FIT1;
        }
        part cooling {
            metadata Failure:FIT1;
        }
        part plug {
            metadata Failure:FIT2;
        }
        part battery {
            metadata Failure:FIT2;
        }
        part switch {
            metadata HWF:FIT1;
        }
        metadata power:SPARE about plug::Failure, battery::Failure;
        metadata processor:AND about CPU1::Failure, CPU2::Failure;
        metadata laptop:OR about power, processor;
        metadata Dep:FDEP about CPU1::Failure, CPU2::Failure {
            trigger_element = cooling::Failure;
        }
        metadata TLE1:TOP_LEVEL about laptop;
        metadata TLE2:TOP_LEVEL about power;
    }
}
```

After the compilation of the SysML model annotated with safety information using our packages in Jupyter Notebook, run the following command to export the package in JSON format. **Currently, we support the latest version – v0.33.0 – of SysML 2.0.**

%export <package_name>

After downloading, it can be uploaded inside the SAFEST tool at the "Failure Models" page under "Fault Tree Analysis" in the left panel:

Failure Models

Model name	Fault tree	Version	Author	Time bound (Life cycle)	Description	Default 🟮	Actions
NPP_RPS	Dynamic			20000	Reactor Protection System	۲	🛆 🧵
NPP_PIS	Dynamic			20000	Pool Isolation System	0	🛆 🧵
NPP_ECCS	Dynamic			20000	Emergency Core Cooling System	0	🛆 🧵
NPP_CIS	Dynamic			20000	Containment System	0	🛆 🧵
NPP_RRS	Dynamic			20000	Reactor Regulation System	0	🛆 🧵
NPP_TEST	Dynamic			20000		0	🛆 🧵
NPP_EVS	Dynamic			20000	Emergency Ventilation System	0	🛆 🧵
NPP_NCHRS	Dynamic			20000	Natural Circulation Heat Removal Failure	0	🛆 🧵
EPS	Dynamic			72	Electric Power System	0	🛆 🧵
NPP_PowerSupply_EDF	Dynamic			100		0	🛆 🧵
CentCompSystem	Dynamic			5		0	🛆 🧵
BipolarHVDC	Dynamic			365		0	🛆 🧵
Test	Dynamic			100		0	🙆 🧵
agasdgf	Dynamic			100		0	🛆 🧵
craftFuelDistributionSystem_AFDS_Engines	Dynamic			100		0	🛆 🧵

Click the "Import failure model from SysML" button to extract failure models as well as parameter sets from the SysML model. The failure models are added to the list of existing failure models on the "Failure Models" page. Whereas all constants (DFTParameters enumerations inside the SysML FailureModes package) are added to the existing parameter sets on the "Parameter Sets" page.

6. Grammars

O Add failure model

Regular Expressions of Identifiers and Numeric Constants

- Identifier (id):
 - It is used to give a unique name to e.g. constants, expressions, etc.
 - It is a string of characters starting with a capital letter (A-Z), a small letter(a-z), or an underscore (_) followed by a capital letter(s), a small letter(s), underscore or digit(s) (0-9).
 - Note that identifiers cannot be from the list of keywords of a grammar.
- Numeric constant (nc):
 - Simple, decimals and exponential i.e 123, 123.123, 123e+1, 123e-1, 123e1, 123.123e+1, 123.123e-1, 123.123e1, 123.123E1, 0.12

Context Free Grammar (CFG) of Real Expressions

- $RE \rightarrow E | + nc | nc$
- $E \rightarrow E \text{ OP } E \mid nc \mid id \mid (RE) \mid pow(RE,RE) \mid log(RE,RE)$

• $OP \rightarrow + |-|*|/$

Where

- "id" is an identifier of an expression,
- "nc" is a numeric constant string, and
- pow, log are keywords of the grammar.

Context Free Grammar (CFG) of Boolean Expressions

- $E \rightarrow E \text{ OP } E \mid id \mid (E) \mid !id \mid !(E) \mid system_failed \mid failed$
- $OP \rightarrow |$
- $OP \rightarrow \&$

Where

- "id" is an identifier of an expression, and
- failed, system_failed are keywords of the grammar.

Context Free Grammar (CFG) of Continuous Stochastic Logic (CSL)

- PROP → P OP2 Type [PathFormula] | T OP2 Type [RewardFormula] | LongRun OP2 Type [StateFormula]
- Type \rightarrow =? | OP3 E
- LongRun \rightarrow LRA | S
- PathFormula → OP4 BoundedExpression StateFormula | StateFormula OP5 BoundedExpression StateFormula
- BoundedExpression \rightarrow ^ { Bound } | { Bound } | Bound | NULL
- Bound \rightarrow [E,E] | OP3 TIME
- TIME \rightarrow (E) | nc
- RewardFormula → I = E | C <= E | F StateFormula | LongRun
- StateFormula -> StateFormula OP6 StateFormula | P OP2 OP3 E [PathFormula] | LongRun OP2 OP3 E [StateFormula] | id | system_failed | failed | (StateFormula) | true | !StateFormula
- $OP \rightarrow => | \& | | | = | != | <= | >= | > | < | + | | * | / | \%$
- OP1 \rightarrow + | -
- OP2 \rightarrow min | max | NULL
- OP3 → <= | >= | > | <
- OP4 \rightarrow G | F
- OP5 \rightarrow U | W | R
- $OP6 \rightarrow || \&$
- $E \rightarrow E \text{ OP } E \mid id \mid nc \mid (E) \mid !(E) \mid (OP1 nc)$
- NULL \rightarrow empty string

Where

- "id" is an identifier of an expression,
- "nc" is a numeric constant string, and
- true, false, Pmin, Pmax, Smin, Smax, Tmin, Tmax, LRAmin, LRAmax, P, R, T, S, LRA, min, max, G, U, F, W, C, I, failed, system_failed are keywords of the grammar.