
Static/Dynamic Fault Trees
& Reward Event Trees Analysis Tool

www.safest.dgbtek.com

User Manual
Version 1.0.0

Dr. Falak Sher,
Asst. Prof. Matthias Volk,
Prof. Joost-Pieter Katoen,
Prof. Mariëlle Stoelinga

Prepared by
DGB Technologies LLC
Wyckoff, NJ 07481, USA

DGB Technologies is a multimission company specializing in formal verification tools and
technologies for stochastic analysis of mission and life-critical systems.

http://www.safest.dgbtek.com

DGB Technologies LLC
Risk & Reliability Analysis
Wyckoff, NJ 07481, USA

Static/Dynamic Fault Trees & Reward Event Trees Analysis Tool
www.safest.dgbtek.com

Dr. Falak Sher,
DGB Technologies LLC
Asst. Prof. Matthias Volk,
Eindhoven University
Prof. Joost-Pieter Katoen,
RWTH Aachen University
Prof. Mariëlle Stoelinga,
Twente University

Abstract

SAFEST is a powerful tool for modeling and analyzing both static and dynamic fault trees as
well as reward event trees. Dynamic fault trees (DFTs) extend standard fault trees by providing
support for faithfully modeling spare management, functional dependencies, and
order-dependent failures. Reward event trees (RETs) extend traditional event trees with state
rewards as well as non-deterministic decision-making at states, thus providing upper and lower
bounds on the analysis results.

The SAFEST tool provides an efficient and powerful analysis of DFTs/RETs via probabilistic
model checking – a rigorous, automated analysis technique for probabilistic systems. The
backbone of the analysis is based on efficient state space generation. Several optimization
techniques are incorporated, such as exploiting irrelevant failures, symmetries, and independent
modules. Probabilistic model checking allows us to analyze the resulting state space with
respect to a wide range of measures of interest. In addition, an approximation approach is
provided that builds only parts of the state space and allows to iteratively refine the
computations up to the desired accuracy.

The SAFEST tool allows embedding DFTs within RETs thus providing probabilities of transition
branches of RETs. It provides a graphical user interface for creating, generating, simulating,
simplifying, and visualizing the results of fault trees/event trees.

SAFEST is a state-of-the-art analysis tool, as demonstrated by an experimental evaluation and
comparison with existing tools. A variety of case studies, including vehicle guidance systems,
train operations in railway station areas, and energy systems such as (nuclear) power plants
have been done. This document explains how to use the SAFEST.

2

http://www.safest.dgbtek.com
http://www.dgbtek.com
https://www.tue.nl/en/
https://www.rwth-aachen.de/
https://www.utwente.nl/en/

Contents

Contents
1. Introduction

Dynamic Fault Trees (DFTs)
Reward Event Trees (RETs)
Probabilistic Model-checking

2. SAFEST Project
Creation
Open
Export
View
Help
Status

3. Fault Tree Analysis Module
Failure Models

View
Creation
Import
Import models from SysML models:

Get the SysML model from a file
Get the SysML model/project via API

Update
Failure Events

Basic
Composite

Parameter Sets
View
Creation
Import
Export
Update

Constants
Real-value Expressions
Failure distributions
Empirical failure distributions

3

Metrics
Basic
Complex
Importance
Custom

Computing
(Exact) Analysis
Bounded analysis
Graphs
Interactive simulation
Minimal cut set (for static fault trees)

4. Bowtie Analysis Module
Parameter Sets

View
Creation
Import
Export
Update

Constant
Real-value Expressions

Loss Sets
Consequence Sets
Bowtie Models

View
Creation
Export
Import
Update

Computing
(Exact) Analysis
Graphs

5. Annotation of SysML Models with Safety Information
6. Grammars

Regular Expressions of Identifiers and Numeric Constants
Context Free Grammar (CFG) of Real Expressions
Context Free Grammar (CFG) of Boolean Expressions
Context Free Grammar (CFG) of Continuous Stochastic Logic (CSL)

4

1. Introduction
Probabilistic risk assessment (PRA) is of critical importance to ensure the safe and reliable
operation of today’s systems in areas such as transportation, infrastructure, power generation,
space exploration, etc. Fault trees and event trees are popular models in PRA and are
recommended by many standards and regulatory bodies.

Dynamic Fault Trees (DFTs)
While standard (or static) fault trees (SFT) are widely used and well supported by PRA tools,
their modeling capabilities are limited. Several extensions to fault trees have been proposed

over the years to overcome these limitations. Dynamic fault trees (DFT) were introduced by
Dugan and are one of the most prominent extensions. DFTs introduce new gate types that allow
for more faithful modeling by providing explicit support for spare management, functional
dependencies, and order-dependent failures. DFT models have been successfully applied for
e.g., aerospace systems, autonomous driving, railway engineering, and analysis of spacecraft
via the COMPASS toolset.

Reward Event Trees (RETs)
Reward event trees extend standard event trees with reward models for states as well as
non-deterministic decision-making at states. Unlike standard event trees, the analysis of RETs
not only provides the probabilities/frequencies of different outcomes/consequences (for an
initiating/accidental event) but also provides upper and lower bounds on the results in the case
of decision-making. Furthermore, it allows the evaluation of expected values of different
quantities of interest e.g. radionuclide emission, etc. Details about event trees can be read at
the link.

We have developed SAFEST, a modern, state-of-the-art tool for modeling and analyzing
both standard (static) and dynamic fault trees and event trees. SAFEST comes with a
web-based graphical user interface that allows efficient modeling, visualization, simplification,
and interactive simulation of fault trees using a graphical editor. Moreover, it allows embedding

5

https://en.wikipedia.org/wiki/Event_tree_analysis

DFTs within RETs thus providing probabilities of transition branches of RETs. The analysis of
dynamic fault trees/event trees is enabled via an efficient translation to Markov models and the
use of state-of-the-art techniques from probabilistic model checking.

Probabilistic Model-checking
Model checking is a rigorous technique for checking whether a given model satisfies a
specification given as a logical formula. Model checking uses highly optimized techniques to
efficiently analyze the state space. Probabilistic model checking considers probabilistic systems
that capture random behavior, such as Markov models. The approach uses tailored numerical
algorithms and answers queries such as “What is the probability of a system failure within a
year?” or “What is the expected time to failure when the system has entered a degraded state?”.

We apply probabilistic model checking to DFT/DET analysis. The input is a DFT/DET
and a measure of interest, for instance, the unreliability or the mean-time-to-failure (MTTF).
From the DFT/DET, a Markov chain is generated. The measure is converted to a logical formula.
Both the Markov chain and the logical formula are fed into a probabilistic model checker which
computes the results.

The use of probabilistic model checking has several advantages for the DFT/DET
analysis. First, model checking supports a wide range of complex logical formulas that can be
checked out of the box. Thus, we use a one-for-all analysis approach instead of having to
develop algorithms tailored to each type of measure. Second, our approach uses model
checking as a black box. This means we can easily change the underlying analysis tools and
directly incorporate and benefit from recent advances in model-checking algorithms without
changing the overall approach. Third, unlike approaches based on Monte Carlo simulation,
probabilistic model checking yields exact results and, in particular, is agnostic to rare events.

6

The key innovation of our approach is an efficient generation of the state space to
combat possible state space explosion. To this end, we developed several optimizations that
exploit irrelevant failures of events, symmetric structures, and independent modules in the DFT.
Furthermore, we incorporated efficient analysis techniques for static fault trees based on binary
decision diagrams (BDD). Finally, we developed an approximation approach based on only
building the most relevant parts of the state space. All of these techniques allow for efficient
analysis of DFTs.

Our experimental evaluation shows that our tool significantly outperforms existing DFT
analysis tools and can handle DFTs with several hundred elements. We have demonstrated the
performance of our tool and the modeling capabilities of DFTs in several industrial case studies.
Examples include DFT models for vehicle guidance systems and analyzing the impact of
infrastructure failures on train operations in railway station areas.

There are two main modules of the SAFEST tool:
Fault Tree Analysis Module: It allows the building of failure models of different failure scenarios
of systems that may arise during the life cycle of a system.
Bowtie Analysis Module: This allows the building of bowtie models that allow for analysis of the
probabilities/frequencies of different outcomes/consequences based on an initiating/accidental
event.

2. SAFEST Project

In the SAFEST tool, multiple failure scenarios (fault trees) of a system as well as bowtie models
(event trees) can be created under the Fault Tree Analysis and Bowtie Analysis modules.

7

Creation
Click on “New Project” in the File menu of the toolbar. The following window will appear.

Fill up mandatory fields, and click the “Save” button. The following page will appear, where
users can make any changes if required.

Open
Click the “Open Project” in the File menu of the toolbar to open an already existing SAFEST
project from your drive.

Export
Click the “Export Project” in the File menu of the toolbar to export the current SAFEST project
on your drive.

View
Project views can be selected from the View menu of the toolbar. There are two types of views:

8

● Simple View. It is for simple users. Under this view, a user cannot create Failure events
in models. Reliability metrics can only be computed for top-level events (TLE or
system_failed). Moreover, only basic reliability measures like reliability/unreliability, mean
time to failure, and average failure probability per hour can be computed for the TLE.

● Advance View. It is for advanced users or researchers. This view gives the full
functionality of the SAFEST tool.

Help
In the Help menu of the toolbar, we have:

● Documentation: It contains a link to the user manual of the SAFEST tool, as well as the
grammar for expressions used in the models as parameters.

● Activation key: Here you can add a license key and activate the SAFEST tool
functionality.

Status
In the status bar, the information about the view of the currently selected project is shown along
with the status of the Analysis engine, which is either Running or Stopped.

3. Fault Tree Analysis Module

It contains all failure models (fault trees) along with their parameter sets, metrics, and computing
methods.
Failure Models
Each failure model comprises a fault tree and its failure events.

View
Click on the “Failure Models” under “Fault Tree Analysis” in the left panel to display all failure
models in a table. A failure model that is worked upon the most can be selected as a default
model by selecting the corresponding radio button.

9

Click on the failure model name in the left panel to see details about the model.

Change fields and click the “Save” button.

Creation
Click on the “Add failure model” button on the “Failure Models” page to create a new model.

10

● A time bound for which the model is to be analyzed may be inserted. This value can be
changed at the time of analysis as well.

● A parameter set in which parameters to be used in the model are defined may be
selected. It can also be changed at the time of analysis.

● The type of fault tree can be selected as “Static” or “Dynamic”.

Fill up the mandatory fields and click the “Save” button.

Import
Click on the “Import failure model” button on the “Failure Models” page to import an already
created model.

11

Select the format of the model and a file from the drive. Click the “Save” button. We support
“JSON” “Galileo” and “Failure Model” formats. Note that Failure Model (.fm) is the format in
which we allow to import/export of failure models in the SAFEST tool.

Import models from SysML models:
Users have the option to extract failure models from SysML 2.0 models. The SysML model has
to be annotated with safety information in order to generate DFTs automatically out of it. Click
the “Import failure model from SysML” button on the “Failure Models” page.

12

The user has two options to extract DFTs out of SysML models

Get the SysML model from a file

Compile a SysML model, which is annotated with safety information – please read the Annotate
SysML Models with Safety Information section below for further details on how to annotate
SysML models with safety information in order to prepare them for automatic extraction of DFTs
out of them, in a Jupyter notebook. And run the following command to export the model in JSON
format. Currently, we support the latest version – v0.33.0 – of SysML 2.0:

%export <package_name>

After downloading, DFTs can be extracted from it. Select the radio button “Get SysML model
from a file”, select the downloaded file (in JSON format), and click the “Extract” button.

The following popup will appear that contains fault trees of all failure scenarios that have been
mentioned in the SysML model. It also contains parameters that have been given in the SysML
mode e.g. failure rates of components inside the SysML.

The user can select the failure models as well as parameters to be included in the project.

Get the SysML model/project via API

SysML projects are normally uploaded to some central repository. One has the option to
connect to that repository using its API and upload the model from there. Select the “Get SysML
models/projects via API” radio button, enter a path in the “API base path” and click the circular
arrow.

13

Select a project and its commit, and then click the “Extract” button to upload the SysML model.
The rest of the steps are the same as above. For testing purposes, we have uploaded our
“LaptopPackage” project to the above repository.

The algorithm will automatically generate fault trees and show them on the “Failure Models”
page. Please read Annotate SysML Models with Safety Information section below for further
details.

Update
Click on the “Fault Tree” of a failure model to open a drag-and-drop grid.

● Draw your tree by dragging different elements from the toolbar.
● Click on an element to update its information in the corresponding popup window

14

● A block can be created from scratch or uploaded from the drive. To upload, select the file
(in JSON or Galileo format) and click the save button.

15

16

● Only one element can be selected as a top-level element in a tree.
● The values of some of the fields e.g. failure rates, probabilities, etc can be given as

parameters (defined later) instead of constant values.
● The “Mark this as a failure event” checkbox is only visible in the advance view.
● The “Mark this as a failure event” checkbox is available only for those elements that

propagate failure to their parents. If this checkbox is selected for an element, it is added
to “Failure Events” under the failure model (in the left panel) as a basic event. This
feature is only available in “Advance View”.

● Elements can be connected with each other by drawing edges between them.

● Click on the icon to enable the selection of multiple elements in the grid view. This

can be done by clicking on a screen and then drawing the mouse. All elements with a
rectangle will be selected, which can then be moved together.

● Right-click on the canvas and the following popup will appear:

○ By clicking “Remove Elements” all selected elements will be removed.
○ By clicking “Copy elements” all selected elements will be copied.
○ By clicking “Paste” previously copied elements will be pasted.

17

● On right-clicking on an element, a popup comes up that allows you to copy the element,
copy the sub-tree under it, delete the element, delete the sub-tree under it, or convert
the sub-tree under it into a block (if possible)

● Click on the download icon , a popup comes up to download the tree in JSON,
Latex, and Galileo formats.

● Click on the icon to highlight the elements that, along with their children, can be
converted into modules (independent sub-trees). In order to convert an element and its
children into a module, right-click on it and then click the “Make block”.

18

● In order to simplify a fault tree click on the down arrow along the icon . It will give
three options for tree simplification:

○ Simplify by all rules. It will apply all rules recursively for simplification.
○ Default rules. It will apply a selected set of rules (most commonly used) for

simplification. They are:
■ SPLIT_FDEPS – Split FDEPs with two or more children into single

FDEPs with only one child.
■ MERGE_BES – Try to merge BEs under an OR-gate into one BE.
■ TRIM – Trim parts of the DFT in place that do not contribute to the

top-level element.
■ REMOVE_SINGLE_SUCCESSOR – Remove gates with just one

successor. These gates will fail together with this child, so they can
directly be eliminated.

■ FLATTEN_GATE – Flattening of AND-/OR-/PAND-gates.
○ Custom rules. It allows users to select rules that are to be applied for

simplification.

19

● Click on the icon (not visible when sub-trees are in focus) to do a basic analysis that
includes reliability, mean-time-to-failure, and average-failure-probability per hour. It will
take the user to the “Analysis” window under “Computing” in the left panel.

20

● Click on the icon to start the interactive simulation. It will take the user to the
“Interactive Simulation” window under “Computing” in the left panel. A popup will appear
to select/change the model and the parameter set. On clicking the “Select” button the
simulation window appears.

21

● Click on the down arrow new the icon , it will give three options to display a tree:
○ Canvas view. It shows the tree in the grid.
○ Tabular view. It will show the tree in a tabular form
○ Textual view. It shows the tree in Galileo format.

22

● Click on the icon to enable the navigator at the bottom of the screen.

● Click on the icon to show the grid on the screen.

● Click on the icon to show the summary information about each element on the
screen.

23

● Click on the icon to display summary information about an element on hovering.

● Click on the icon to search for any element on the screen.

Failure Events
Failure events are basic and compound events (in the form of boolean equations on elements of
a fault tree) that are important/relevant and their probabilities can be computed.

In the advanced view, “Failure Events” are visible in the left panel under each failure model. The
“Failure Events” page has two tabs.

Basic
It will display all elements of the fault tree whose “Mark this as a failure event” checkbox is
selected. Failures of such elements are important events whose probabilities can be computed.
Composite
On this tab, we can create compound events by writing boolean expressions on the other
events (basic and compound).

24

Click on the “Add failure event” to show a popup

25

Enter event label and boolean expression on existing events (shown below in the field “The
above expression can use the following Event labels”). On filling in mandatory fields, click the
“Add” button.

Parameter Sets
Each parameter set contains a list of parameters that are key-value pairs. They are used to
specify values of e.g. probabilities, failure rates, etc. in fault tree models. By changing their
values several variants of fault trees can be generated, which can then be compared with each
other based on the results of metrics of interest. Each parameter set comprises:

● Constants
● Real-valued expressions
● Probability distributions (Exponential, Erlang, Weibull, Log-normal)
● Empirical probability distributions – failure distributions generated from data sets.

View
Click the “Parameter Sets” under “Fault Tree Analysis” in the left panel to view all existing
parameter sets.

Creation
Click the “Add parameter set” button to create a new parameter.
Import
Click the “Import parameter set” to import the parameter set in .ps format (a format in which
parameter sets are imported/exported in our tool).
Export
Click the icon to export a parameter set in .ps format.
Update
Click a parameter set to update its details

26

Constants
Constants can only be numeric e.g. 4, 2.3, 4e-6 etc. Their value can be changed at the time of
analysis. For example, graphs can be plotted for matric results against ranges of values of
constants.

● Click “Add row” to enter a new row in the table.
● Click “Export” to export constants in a csv format.
● Click “Import” to import constants from a csv file.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data. This action will save data in all the tabs.

Real-value Expressions
These are non-negative, real-value expressions, which can use constants (defined above) e.g. x
+ 2 where x is a constant. The grammar of the expression is given here.

● Click “Add row” to enter a new row in the table.
● Click “Export” to export expressions in a csv format.
● Click “Import” to import expressions from a csv file.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data. This action will save data in all the tabs.

27

Failure distributions
Failure distributions can be exponential, erlang, Weibull, log-normal, and constant probability.
Multiple distributions can be added by pressing the add row.

● Click “Add row” to enter a new row in the table.
● Click “Export” to export failure distributions in a csv format.
● Click “Import” to import failure distributions from a csv file.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data. This action will save data in all the tabs.

28

Empirical failure distributions
Empirical distributions are calculated from a data set using statistical methods. For that,
historical failure data of a component is used to estimate the tentative failure probability
distributions, which might have generated it, sorted according to their goodness-to-fit (GTF)
values -- GTF value indicates the chance the data was generated by the corresponding
distribution.

You can see how these distributions fit the data by clicking on the graph icon in the last column
of their corresponding rows. Using Empirical distribution:

Each data may fit on multiple distributions, which are sorted according to their goodness-to-fit
values, therefore we provide a radio button to select any distribution that we want to use.

Moreover, you can import and export empirical distributions (csv format) and use them in other
projects.

29

● Generating empirical distribution. An empirical distribution can be added by clicking
the “Add distribution” button. It will display all empirical distributions that have been
generated previously and stored on the server side. One can compute a new distribution
by specifying the file that contains data on which the distribution is to be approximated.

○ In the “Computed Distributions” table, Click the icon in a row to add the
distribution in the “Empirical Distributions” table in the main tab.

○ To generate a new distribution from data, enter the name of the distribution in the
“Distribution Name” field, choose the data file from your drive, and click the
“Compute” button. A new row will appear in the “Computed Distributions” table
with a “running” status.

○ Click the “Refresh” button to check whether the distributions with “running” status
have been computed.

30

● Generating mixture distribution: a mixture distribution can also be generated by
clicking the “Mix distributions” button. It will show a popup where distributions along with
their weights can be added. For example, d3 = 0.3*d1 + 0.7*d2 is a mixture distribution,
where d1 and d2 are existing (empirical) failure distributions in the “Failure distributions”
and “Empirical failure distributions” tabs. Click the “Add row” button if you want to add
more distributions to the mixture.

31

● Click the “Export” button to export empirical distributions in a JSON format (that includes
the image data as well).

● Click the “Import” button to import empirical distributions in a JSON format (that includes
the image data as well).

● Click the “Import via API” button to get empirical distributions that have been generated
externally at a given API. The same data format can be accessed by clicking “Sample
data in JSON format” on the popup.

Metrics
Metrics help us formally specify properties of interest we want to verify about failure models.
There is a list of predefined metrics (classified into basic, complex, and Importance metrics). For
advanced users, it is possible to define custom metrics using continuous stochastic logic (CSL).

32

In advance view “Metrics” link is visible in the left panel. Click on it, and a screen with four tabs:
Basic, Complex, Criticality, and Custom will be visible.

Basic
It contains four important metrics that are verified in most of the reliability analysis cases:

● Mean-time-to-failure. Expected time to system failure or scenario occurrence.
● Reliability: Probability of failure in a given time bound.
● Unreliability: The complement of reliability (1- Reliability).
● Average failure probability per hour.

Complex
It contains six metrics. These metrics cannot be verified directly by the Storm model-checker.
They need some additional computations at the back end for their verification.

● Full Function Availability (FFA) describes the time-bounded probability that the system
provides full functionality, i.e., it has neither failed nor degraded. It is described as the
complement of the time-bounded reachability of a failed or degraded state.

● Failure Without Degradation (FWD) describes the time-bounded probability that the
system fails without being degraded first. It is the time-bounded reach-avoid probability
of reaching a failed state without reaching a degraded state.

● Mean Time from Degradation to Failure (MTDF) describes the expected time from the
moment of degradation to system failure. It is obtained by taking the expected time of
failure for each degraded state and scaling it with the probability of reaching this state
while not being degraded before.

● Minimal Degraded Reliability (MDR) describes the criticality of degraded states by giving
the worst-case failure probability when using the system in a degraded state. For all
degraded states, the time-bounded reachability of a TLE failure is computed. The MDR
is the minimum over the complement of this result for all degraded states.

● Failure under Limited Operation in Degradation (FLOD) describes the probability of
failure when imposing a time limit for using a degraded system. For all degraded states,
the time-bounded reachability probability of a failed state is computed within the
restricted time-bound given by a drive cycle. This value is scaled by the time-bounded
reach-avoid probability of reaching a degraded state without degradation before.

● System Integrity under Limited Fail-Operation (SILFO) considers the system-wide impact
of limiting the degraded operation time. SILFO is split into two parts considering failures
without degradation (FWD) and failures with degradation (FLOD).

33

Importance
It contains seven metrics. These metrics cannot be verified directly by the Storm model-checker.
They need some additional computations at the back end for their verification.

● Birnbaum Index (BI): How much the unreliability of the system depends on the
unreliability of a specific component.

● Criticality Importance (CI): How much the unreliability of the system depends on the
unreliability of a specific component scaled by the ratio of component and system
unreliability.

● Risk Achievement Worth (RAW): The impact of the total degradation of the component
on the system unreliability.

● Risk Reduction Worth (RRW): The impact of making the component fully reliable on the
system's unreliability.

● Diagnostics Importance Factor (DIF): How often a component fails in states where the
system has failed.

● BAGT+: Change in MTTF if the component fully degrades.
● BAGT-: Change in MTTF if the component is fully reliable.

Custom
One can create custom metrics on the “Custom” tab. It allows specifying metrics using
continuous stochastic logic (CSL).

34

● Click the “Add metric” button to add a new metric.

○ Parameters and labels used inside metrics formulae must have unique names
among themselves, starting with a letter or underscore (_) followed by
underscores, letters, and/or numbers. They must not be from the list of keywords

35

- - true, false, Pin, Pmax, Smin, Smax, Tmin, Tmax, LAmin, LRAmax, P, R, T, S,
LRA, min, max, G, U, F, W, C, I, failed.

○ The formula can be defined using probabilistic computation tree logic
(PCTL)/continuous stochastic logic (CSL). For example, P = ? [true U <=10000
(failed & ! mode1)], where failed and mode1 represent quantifiable states. The
grammar of expressions is given here.

○ The “Complement” checkbox can be selected in order to calculate the
complement of a property mentioned in the formula field.

○ Note that metric parameters which are entered on the above screen are
exclusively dedicated to metrics. Their values are not taken from the parameter
set that is attached to a failure model. However, their values can be changed at
the time of analysis, and ranges for their values can be provided to draw plots.

○ Click the “Export metrics”/”Import metrics” in order to export/import metrics in the
.metrics format (a format supported by our SAFEST tool).

Computing
Failure models can be analyzed in different ways:

● Analysis – the exact results of different metrics can be computed.
● Bounded Analysis – the exact values of metrics can be bounded from above and below

in a graphical way.
● Graphs – the exact results of different metrics can be graphed against e.g. time.
● Interactive Simulation – failure propagation in fault trees can be shown in an interactive

way.
● Minimal Cut Sets – for static fault trees MCS can be computed and displayed graphically.

(Exact) Analysis

Complex systems usually have dynamic behavior because of e.g. spare components, failure
sequence among components, functional dependencies, etc. The analysis of such systems is
quite complex which is usually based on simulation or generalization techniques. Unlike others,
we implement formal verification techniques e.g. probabilistic model-checking, and thus provide
exact results on measures of interest.

Click on the “Analysis” link under “Computing” in the left panel. The following window will appear
with four tabs for different classes of metrics.

36

● One can verify a metric on each tab, the mechanism is more or less the same. For
example, click on the “Minimal degraded reliability (MDR)” link on the complex tab. The
following window will appear:

○ “Failure model” dropdown: a model that is selected as a default model in the
“Failure Models” window is automatically selected.

○ “Fault tree root element”: the root element of the above-selected failure model’s
fault tree is selected by default. One can change the root element by selecting
any other element in the dropdown. Note that the dropdown contains only those
elements of the fault tree whose “Mark this as a failure event” checkbox is
selected in the fault tree.

○ “Metric parameters”: Note that metric parameters cannot take values defined in
the parameter set attached to the above-selected failure model. Each metric
parameter has to be assigned a value. For the “time-bound” metric parameter, a
default value is assigned to it that is associated with the above-selected failure
model.

37

○ “Assign failure event labels (of the model) to metric labels”: Assign failure events
of the models to metric labels.

○ A parameter set that is attached to the selected failure model (above) is
automatically selected. It can be changed at this point to generate another variant
of the failure model.

○ Optionally, change the values of “Constants” defined in the selected parameter
set. Note that values of other elements of the parameter set (real-value
expressions, (empirical) failure distributions) cannot be changed at the time of
analysis.

○ The analysis method is selected automatically based on the selected metric.
However, for some metrics both Markov and Hybrid (BDD and/or Markov)
analysis are possible. One can decide the analysis type by selecting the
corresponding radio button.

○ “Simplify fault tree before analysis”: select this checkbox if the fault tree has to be
simplified by applying simplification rules before analysis.

○ Finally, select a tab on which the result of the analysis has to be displayed. It can
be an existing tab or a new tab.

● Click the icon to view the log of the analysis.

38

○ Click the “Download” link to download the generated artifact (DFT/DRN).
○ Click the “Open in new tab” link to open the generated artifact in a new browser

tab.
○ Click the “Load” link to load the generated DFT as a failure model in the current

project.

● Click icon to download the results in the selected rows in a csv format.

Bounded analysis

In order to compute exact results for measures using Markov analysis, first of all, the full state
space is constructed and then analyzed. However, many states in the state space only
marginally contribute to the result. If one is interested in an approximation of the MTTF (or the
reliability), these states are of minor interest. We implemented the algorithms, proposed by Dr.
Matthias Volk et. al., that generate state space on-the-fly, and then compute an upper and a
lower bound to the exact results on a partially unfolded system, which might be much smaller as
compared to the fully unfolded system. The approximation is sound ensuring the exact result
lies between these two bounds.

39

Click on the “Bounded Analysis” link under “Computing” in the left panel and then click
e.g. “Mean-time-to-failure” link. The following window will appear:

● All fields are filled up as described in the “Analysis” case with a few additions:
● “Error margin between upper and lower bound of the actual value”: A percentage error

margin is entered in this field.
● Optionally enter “Graph name” and the label of its Y-axis. Note X-axis will always

represent the number of iterations in this case.
● Bounded analysis is always done by the Markov technique.
● Click the “Start” button, the results will be displayed as:

40

The upper line in the graph shows the upper bound whereas the lower line shows the lower
bound on the actual value of the metric.

● In addition, we show the number of generated states and the transitions explored so far.
● In case you are interested in further reducing the error margin, insert a new value in the

text field and click the play button .
● One can apply a log function on the values of the Y-axis by selecting it on the right side

of the graph.

● The graph values can be downloaded by clicking on the icon.

Graphs

We provide an interface to plot and compare measures of interest e.g. reliability, MTTF, etc.
against different parameters of interest. Click on the “Graphs” link under “Computing” in the left
panel and then click “Reliability”. The following window will appear:

41

● All fields are filled up as described in the “Analysis” case with a few additions:
● One can specify a range of values of metric parameters as well as of Constants defined

in the selected parameter set.
● A graph can be plotted on an existing graph as well that has the same variable on the

X-axis.
● The variable on the X-axis of the graph can be selected either from the metric

parameters or from the Constans of the selected parameter set.
● Click the “Start” button to display the graph:

42

● Click the icon to rerun the analysis and draw a graph.
● Click the icon to stop the running analysis.
● In the case of Importance measures, one can draw a plot for multiple components at the

same time:

43

44

Interactive simulation

The idea is to interactively visualize a sequence of failures in a DFT. The user would start with a
usual DFT and could select one of the basic events (BE) that should fail first. Based on this, the
status of each DFT element (failed, operational, fail-safe, claiming in SPAREs, etc.) is
redetermined and then visualized. Afterward, another BE can be selected to fail, and so forth.
The main benefit of this feature is that the semantics of DFTs become much clearer as users
can try out the behavior by themselves.

Click on the “Interactive Simulation” link under “Computing” in the left tab. The following screen
will appear.

● Click on the icon to start the simulation. The user will be prompted to select a failure
model and a parameter set as:

● Click the icon to start the simulation. The user will be prompted to select BEs, having
constant probability distribution, that will be failed on start. On clicking the “Start” button,
the simulation will start.

45

● “PDEP propagates failure” checkbox is selected. That means if the trigger of any PDEP
fails, the gate will fail all its dependent BEs. Currently, the checkbox is disabled, which
will be enabled in the next releases to give more flexibility in simulation.

● All basic events (BEs) that can fail are shown in green.
● The user clicks any green BE to fail it. Its color will be turned into Red. After this, BEs

that are operational and cannot fail currently remain White, those that are in a fail-safe
state are Orange, and those that are in a dont-care state are Yellow.

● The user keeps on failing green BEs, and in return, the failure keeps on moving up the
tree until the top-level event turns Red showing the failure of the top-level event.

● The sequence of failures can be shown by clicking on the icon :

● Users can restart the simulation by clicking on the icon .

46

Minimal cut set (for static fault trees)

Cut sets represent sets of BEs whose failure leads to the failure of the top-level element of a
fault tree. A minimal cut set is a set whose proper subset cannot be a cut set itself. Cut sets
cannot be calculated for dynamic fault trees because of the dynamic nature of the system.

Click on the “Minimal cut set” link under “Computing” in the left tab. The following screen will
appear.

Click on the icon to start. The user will be prompted to select a failure model and a
parameter set as:

On clicking “Find”, minimal cut sets are computed and displayed on the screen as:

47

● All minimal cut sets will be shown on the left of the screen.
● On clicking a cut set, the corresponding BEs will be highlighted (in Red) in the tree.

4. Bowtie Analysis Module

It contains all bowtie models (event trees) along with their parameter sets, loss sets,
consequence sets, and computing methods.

Parameter Sets
Each parameter set contains a list of parameters that are key-value pairs. They are used to
specify values of e.g. probabilities, failure rates, etc. in fault tree models. By changing their
values several variants of fault trees can be generated, which can then be compared with each
other based on the results of metrics of interest. Each parameter set comprises:

● Constants
● Real-valued expressions

View
Click the “Parameter Sets” under “Fault Tree Analysis” in the left panel to view all existing
parameter sets.

48

Creation
Click the “Add parameter set” button to create a new parameter.
Import
Click the “Import parameter set” to import the parameter set in .ps format (a format in which
parameter sets are imported/exported in our tool).
Export
Click the icon to export a parameter set in .ps format.
Update
Click a parameter set to update its details

49

Constant
Constants can only be numeric e.g. 4, 2.3, 4e-6 etc. Their value can be changed at the time of
analysis. For example, graphs can be plotted for matric results against ranges of values of
constants.

● Click “Add row” to enter a new row in the table.
● Click “Export” to export constants in a csv format.
● Click “Import” to import constants from a csv file.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data. This action will save data in all the tabs.

Real-value Expressions
These are non-negative, real-value expressions, which can use constants (defined above) e.g. x
+ 2 where x is a constant. The grammar of the expression is given here.

● Click “Add row” to enter a new row in the table.
● Click “Export” to export expressions in a csv format.
● Click “Import” to import expressions from a csv file.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data. This action will save data in all the tabs.

Loss Sets

A loss set contains quantities along with their units and descriptions. These quantities can be
assigned values at nodes/states of event trees. During analysis, their expected values are
calculated by the analysis algorithms.

50

Click the “Loss Sets” under “Bowtie Analysis” in the left panel to view all existing parameter sets.

● Click the “Add loss set” button to create a new loss set.
● Click the “Import loss set” to import the loss set in .rs format (a format in which loss sets

are imported/exported in our tool).

● Click the icon to export a loss set in .rs format.
● Click a loss set to view its details

● Click the “Add row” button to add a new loss quantity in the above table.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data.
● Click “Export” to export loss in a csv format.

51

● Click “Import” to import consequences in a csv format.

Consequence Sets

A consequence set contains outcomes along with their descriptions. These outcomes can be
assigned to nodes/states in event trees. During analysis, their expected
frequencies/probabilities are calculated by the analysis algorithms.

Click the “Consequence Sets” under “Bowtie Analysis” in the left panel to view all existing
parameter sets.

● Click the “Add consequence set” button to create a new consequence set.
● Click the “Import consequence set” to import a consequence set in .cs format (a format

in which loss sets are imported/exported in our tool).

● Click the icon to export a consequence set in .cs format.
● Click a consequence set to view its details

52

● Click the “Add row” button to add a new consequence in the above table.

● Click the icon in the last column of any row to add a new row above it.
● Click the “Save” button to save the data.
● Click “Export” to export consequences in a csv format.

Bowtie Models

It contains multiple Bowtie models represented as event trees in a graphical way.

View
Click on the “Bowtie Models” under “Bowtie Analysis” in the left panel to display all Bowtie
models in a table. A model that is worked upon the most can be selected as a default model by
selecting the corresponding radio button.

53

Creation
Click the “Add Bowtie model” to create a new model.

Enter all mandatory fields and click the “Save” button.

Export
Click the icon in the corresponding row to download the bowtie model in .et format (a
format used in the SAFEST tool to import/export bowtie models).

Import
Click the “Import Bowtie model” button to import a Bowtie model (saved in .et format) from your
drive.

54

Update
Click on the model in the table to open it in the canvas.

● Click on the first arrow to update the information of “Accidental Event” (initiating event).

For the Accidental Event, select the respective radio button to enter its:
○ Probability,
○ Probability from a failure model – The “Failure model” dropdown will be filled with

all failure models that exist under the “Failure models” under the “Fault Tree
Analysis” in the left panel. Now select a failure model from the “Failure model”
dropdown, it will populate the “Model event” dropdown with all the failure events
(basic as well as compound) defined for the selected failure model. Now select
an event from the “Model event” dropdown. It will populate the “Event name” field
with the name of the model concatenated with the name of the event. One can
update it to make the name simple.

○ Frequency
Optionally enter the name of the event in the “Event name” field.

● Right-click on a node in order to add a transition, a consequence, or past a transition
(which is already copied).

55

● Click the “Attach transition” to add a new transition from the selected node. You can add
multiple transitions from a given node. Note that a transition can only be attached with a
node having no consequence attached to it.

○ The event that triggers the transition can be
■ User-defined, or
■ Event from a failure model (DFT).

○ In case the event is from a failure model (fault tree), select the “Event from a
failure model” radion button.

■ It will populate the “Failure model” with all failure models that exist
under the “Failure models” under the “Fault Tree Analysis” in the
left panel.

■ Now select a failure model from the “Failure model” dropdown, it
will populate the “Model event” dropdown with all the failure events
(basic as well as compound) defined for the selected failure
model.

■ Select an event from the “Model event” dropdown. It will populate
the “Event name” field with the name of the model concatenated
with the name of the event. One can update it to make the name
simple. It will also add two rows in the “Next States” table - one is
annotated with the probability of the occurrence of the event and
the other one with its complement.

■ Note that only two branches are possible when the triggering
event is taken from a failure model.

56

■ One can update the names of the next states.

○ In case the event is user-defined, select the “User-defined” radio button. Fill up
the name of the event.

■ Multiple branches of transition can be added in this case. Click the “Add”
button to add a new branch in the “Next States” table.

■ Add transition probability function for each branch of transition. It can be a
constant value, a constant parameter, or an expression parameter. Note
that the constant parameter or the expression parameter should be
defined in a parameter set and attached to the model before analysis.

■ Note that the sum of probabilities of all branches should be equal to one.
Otherwise, there will be an error at the time of analysis.

● Click a transition to update it. The popup, which comes up while adding a new transition,
will appear.

● Click on a transition branch to update it. The following popup comes up. One can update
the transition probability only if it has been specified by the User i.e. it is not computed
from an attached fault tree.

57

● Right-click on a transition in order to copy/delete a sub-tree originating from the
transition, or copy the transition (along with its branches).

● Copy a transition/sub-tree and then right-click on a node in order to paste it. Note
that transition branches cannot be copy-pasted individually.

58

● Click the “Attach consequence” in order to attach a consequence with a node. All
consequences in the “Consequence Set” attached to the model will be available in the
“Title” dropdown. Select one of the consequences and click the “Save” button. Note that
a consequence can be attached to a node if and only if there is no other transition
attached to the node.

● Click on the icon to enable the navigator at the bottom of the screen.

● Click on the icon to show the grid on the screen.

● Click on the icon to show the summary information about each element on the
screen.

59

● Click on the icon to display summary information about an element on hovering.

● Click on the icon to search for any element on the screen.

Computing

Bowtie models can be analyzed for consequence frequencies/probabilities and expected values
of (loss) quantities.

● Analysis – the exact results of consequence frequencies/probabilities and expected
values of (loss) quantities can be computed.

● Graphs – the exact results of consequence frequencies/probabilities and expected
values of (loss) quantities can be graphed against time duration.

(Exact) Analysis

Click on the “Analysis” link under “Computing” in the left panel. The following window will
appear.

Click the icon and the following popup will show up:

60

● Select the bowtie model that you want to analyze from the “Bowtie mode” dropdown – it
shows all bowtie models that exist under the “Bowtie Models” in the left panel.

● Change the parameter set if needed. The selected parameter set should contain all
constants/expressions that have been used in the bowtie model as parameters.

● The constants defined in the selected parameter set (above) are shown in the table,
which can be updated if needed.

● “Specify time bound to calculate the probabilities of fault tree events attached with
transitions of the bowtie model” field contains the default value associated with the
selected bowtie model (above). It can be updated here if needed. The failure probability
of all failure models attached to the selected bowtie model will be analyzed for this
time-bound.

● Enter the name of the tab where the results of the analysis will be displayed.
● Click the “Start” button to start the analysis.

61

● Click the icon to view the log of the analysis.

62

● Click the “Download” link to download the generated artifact (DFT/DRN).
● Click the “Open in new tab” link to open the generated artifact in a new browser tab.
● Click the “Load” link to load the generated DFT as a failure model in the current project.

● Click the icon to download the results in the selected rows in a csv format.

Graphs
We provide an interface to plot consequence probabilities/frequencies or expected values of
loss quantities against different parameters of interest. Click on the “Graphs” link under
“Computing” in the left panel. Click the “Consequence/Expected Loss”, and the following
window will appear:

● Select whether the min, max, or both values of consequences probabilities/frequencies
(expected loss) are to be computed.

● “Bowtie model” dropdown: a model that is selected as a default model in the “Bowtie
Models” page is automatically selected.

● “Assign mode consequences (quantities) to metric labels (parameter)”: Select (multiple)
consequence(s) (quantities) from the dropdown for which we want to measure
probabilities/frequencies (expected values).

63

● A parameter set which is attached with the selected bowtie model (above) is
automatically selected. It can be changed at this point to generate another variant of the
model.

● One can specify a range of values of time-bound as well as of constants defined in the
selected parameter set.

● Select whether to draw a new graph or it is to be plotted on an existing graph that has
the same variable on X-axis.

● The variable on the X-axis of the graph can be either time-bound or from the constraints
of the selected parameter set.

● Click the “Start” button to display the graph:

● Click the icon to stop the running analysis.

● Click the icon to rerun the analysis and draw a graph.

5. Annotation of SysML Models with Safety Information

In order to annotate SysML model elements with safety information, we have created a few
packages, which are to be used inside the SysML models against which fault trees are to be
generated. These packages are:

● DGBMetadata: It contains a package DFTElements with the following sub-packages and
elements:

64

● DFTGates package: It defines all gates that are used to construct fault trees.

● DFTBEs package: It defines all basic elements that may be used in fault trees.

65

○ TOP_LEVEL metadata: It is used to annotate an element of a fault tree as a
top-level element. More than one element can be annotated as top-level
elements. This helps generate multiple fault trees (for different scenarios)
collectively that may share Gates and BEs.

● FailureModes: It defines all failure modes that may be used to annotate elements of
SysML models with safety information. At the moment we allow failure modes to be
modeled with the following failure distributions:

○ Exponential distribution
○ Erlang distribution
○ Weibull distribution
○ Log-normal distribution, and
○ Constant distribution

Moreover, within this package, we allow to define model constants as (DFTParameters)
enumerations. These constants can be used to define failure rates, probabilities, shapes,
etc. of failure modes.

66

Laptop Example.
The following example explains how elements within the SysML model can be annotated to
generate fault trees out of them.

67

After the compilation of the SysML model annotated with safety information using our packages
in Jupyter Notebook, run the following command to export the package in JSON format.
Currently, we support the latest version – v0.33.0 – of SysML 2.0.

%export <package_name>

After downloading, it can be uploaded inside the SAFEST tool at the “Failure Models” page
under “Fault Tree Analysis” in the left panel:

68

Click the “Import failure model from SysML” button to extract failure models as well as
parameter sets from the SysML model. The failure models are added to the list of existing failure
models on the “Failure Models” page. Whereas all constants (DFTParameters enumerations
inside the SysML FailureModes package) are added to the existing parameter sets on the
“Parameter Sets” page.

6. Grammars

Regular Expressions of Identifiers and Numeric Constants

● Identifier (id):
○ It is used to give a unique name to e.g. constants, expressions, etc.
○ It is a string of characters starting with a capital letter (A-Z), a small letter(a-z), or

an underscore (_) followed by a capital letter(s), a small letter(s), underscore or
digit(s) (0-9).

○ Note that identifiers cannot be from the list of keywords of a grammar.
● Numeric constant (nc):

○ Simple,decimals and exponential i.e 123, 123.123, 123e+1, 123e-1, 123e1,
123.123e+1, 123.123e-1, 123.123e1, 123.123E1, 0.12

Context Free Grammar (CFG) of Real Expressions

● RE → E | + nc | - nc
● E → E OP E | nc | id | (RE) | pow(RE,RE) | log(RE,RE)

69

● OP → + | - | * | /

Where
● “id” is an identifier of an expression,
● “nc” is a numeric constant string, and
● pow, log are keywords of the grammar.

Context Free Grammar (CFG) of Boolean Expressions

● E → E OP E | id | (E) | !id | !(E) | system_failed | failed
● OP → |
● OP → &

Where
● “id” is an identifier of an expression, and
● failed, system_failed are keywords of the grammar.

Context Free Grammar (CFG) of Continuous Stochastic Logic (CSL)

● PROP → P OP2 Type [PathFormula] | T OP2 Type [RewardFormula] |
LongRun OP2 Type [StateFormula]

● Type → =? | OP3 E
● LongRun → LRA | S
● PathFormula → OP4 BoundedExpression StateFormula | StateFormula OP5

BoundedExpression StateFormula
● BoundedExpression → ^ { Bound } | { Bound } | Bound | NULL
● Bound → [E,E] | OP3 TIME
● TIME → (E) | nc
● RewardFormula → I = E | C <= E | F StateFormula | LongRun
● StateFormula -> StateFormula OP6 StateFormula | P OP2 OP3 E [PathFormula

] | LongRun OP2 OP3 E [StateFormula] | id | system_failed | failed |
(StateFormula) | true | !StateFormula

● OP → => | & | | | = | != | <= | >= | > | < | + | - | * | / | %
● OP1 → + | -
● OP2 → min | max | NULL
● OP3 → <= | >= | > | <
● OP4 → G | F
● OP5 → U | W | R
● OP6 → | | &
● E → E OP E | id | nc | (E) | !(E) | (OP1 nc)
● NULL → empty string

70

Where
● “id” is an identifier of an expression,
● “nc” is a numeric constant string, and
● true, false, Pmin, Pmax, Smin, Smax, Tmin, Tmax, LRAmin, LRAmax, P, R, T, S,

LRA, min, max, G, U, F, W, C, I, failed, system_failed are keywords of the
grammar.

71

